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I. Background of Text-to-SQL



Background
Relational databases store a vast amount of today’s information and provide the 

foundation of applications.

medical	records	financial	marketscustomer	relations	
management

• Structured Query Language (SQL)
• Accessing relational databases 
• Machine understandable, Quick and efficient
• Not user-friendly, requires deep understanding of the database and SQL syntax

Natural	Language	Question

Text-to-SQL
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Single-Table Text-to-SQL
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Natural Language 
Question

WikiSQL

one table

Background

SQL query

Task definition

𝑦 = 𝑀 𝑞, 𝑇

𝑇 = ℎ!, ℎ", … , ℎ#

• 𝑞: NLQ

• 𝑦: SQL query

• 𝑇: table

• ℎ!: 𝑖-th header

Goal: learn model 𝑀



WikiSQL SQL skeleton
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SELECT   $AGG   $SEL
(WHERE   $COL   $OP   $VAL)
(AND   $COL   $OP   $VAL)*

• $: slots

• ∗: zero or more AND clauses

1. Select-Column(SC):   
find the column $SEL in the SELECT clause from T.

2. Select-Aggregation(SA): 
find the aggregation function $AGG (∈{NONE, MAX, 
MIN, COUNT, SUM, AVG}) of the column in the SELECT 
clause.

3. Where-Number(WN):
find the number of where conditions, denoted by N.

4. Where-Column(WC): 
find the column (header) $COL of each WHERE 
condition from T .

5. Where-Operator(WO): 
find the operator $OP (∈ {=;  >; < }) of each $COL in 
the WHERE clause.

6. Where-Value(WV): 
find the value $VAL for each condition from the 
question, specifically, locating the starting position of 
the value in q.

Background
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Background

• Without Pre-trained model
• The SQL skeleton is not 

effectively used.

Seq2Seq-based Methods

[Zhong, Xiong, and Socher 2017]; [Xu, Liu, and Song 2017]; [Yu et al. 2018]; 
[Dong and Lapata 2018]; [Chang et al. 2020]

Multi task learning

[Hwang et al. 2019];[He et al. 2019]; [Lyu et al. 2020]; [Chen 
et al. 2021] ;[Guo et al. 2022]

• Pre-trained model Enhancement
• Multi-submodule framework

BERT [Devlin et al. 2019] 
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Background

medical	records	financial	markets

• New product categories
• Target customer change

• Business expansion
• New Stock Issuance
• Policy Adjustment

• New Diseases (Covid 19)
• Section upgrade

smart	speakers

• New actions, skills, …
• Import knowledge 

customer	relations	
management

… … … …

Few-shot Tables/ Zero-shot TablesNLQ-SQL pairs that are difficult to collect 
annotations in a short period of time! 
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II. Zero-shot Text-to-SQL



Challenge: Zero-shot Tables
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The tables whose schema are not visible in the training set.

Training Tables

Model

Zero-shot Tables

Training

Test

68 70 72 74 76 78 80 82

Dev

Test

Zero-shot test set Full test set

[Dong and Lapata 2018] 

[Hwang et al. 2018] 

Zero-shot Text-to-SQL
Few-shot/ Zero-shot performance
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Zero-shot Text-to-SQL

Annotations need to be built 
manually, which is expensive.

[Chang et al., 2020] 
An auxiliary task to model the mapping from 
the NLQ to headers

Chang, S.; Liu, P.; Tang, Y.; Huang, J.; He, X.; and Zhou, B. 2020. Zero-Shot Text-to-SQL Learning with Auxiliary Task. In AAAI 2020
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Motivation

How many reasons did 
the son and heir Kale 

Kyetaungnyo has when 
he ceased to be heir?

SELECT COUNT(Ceased to be heir; reason) 
WHERE Relationship to Monarch = “son” 

AND Heir = “Kale Kyetaungnyo ”

Monarch Heir Relationship 
to Monarch

Ceased to be 
heir; reason

…

… … … … …
Minkhang I Kale 

Kyetaungnyo 
son May 1400 father 

succeeded
…

… … … … …

1. Table content can provide abundant information for 
predicting headers.

2. Meta-learning can help the model learn the generalization 
ability between different tables from the training data.

Process Overview

Preprocess
coarse-grained filtering

• 𝑛(𝑞)	: 𝑛-gram of 𝑞
• 𝑥  : the length of string 𝑥
• 𝑙𝑐𝑠 z𝑥, 𝑦 Longest Consecutive Common 

Subsequence

Zero-shot Text-to-SQL
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Encoding Module

• BERT [Devlin et al. 2019] for header
• Char-embedding for content

Where-Number, Where-Column, Where-Value Sub-Module

• LSTM (gray) for obtaining information of header.
• LSTM-c (blue) for obtaining information of content.

Zero-shot Text-to-SQL
Content-Enhanced Model



Zero-Shot Meta Learning Framework
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𝜃 𝜃$

𝜃 ← 𝜃$
𝜙

⋂ = 	∅

Support Set Query Set

𝑁-way 𝐾-shot 𝑁-way 𝐾-shot

n Simulate a zero-shot environment

n Get a possible gradient on the Support set 
and correct the gradient on the Query set

Zero-shot Text-to-SQL



Experiments

• WikiSQL  [Zhong, Xiong, and Socher 2017]
Ø English open-domain
Ø 20K tables
Ø 56,355 train; 8,421 dev; 15,878 test questions

• ESQL 
Ø Chinese domain-specific
Ø 17 tables
Ø 10,000 train; 1,000 dev; 2,000 test questions

Datasets

Table 1: Overall results on WikiSQL. “x(-)” denotes the 
model x with BERT-base. “x(*)” denotes the model x 
with BERT-large or larger pre-trained model, such as 

MTDNN in X-SQL or tabular-specified TaBERT. 
• On LF accuracy, our approach achieves state-of- 

the-art results on the development set and ranks 
second only to HydratNet (-0.1%) on the test set.

• On EX accuracy, our approach achieves state-of-
the-art results on both the sets. 

15

Compared with the table-specific pre-trained model 
(TaBERT), our model still has advantages without pre-
training on table corpus.

Zero-shot Text-to-SQL



Table 2: Results of sub-tasks on WikiSQL and ESQL.
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• w/o table content(TC) 
Remove all the processes 
in WN, WC, and WV.

• w/o value linking(VL) 
Retain the processes 
related to TC but remove 
the value linking in WV

• w/o meta-learning(ML) 
Replace the meta-
learning strategy with 
the traditional mini-batch 
strategy.

• Total MC-SQL achieves the optimal results on LF accuracy and most 
sub-tasks.

• the contribution of TC is mainly reflected in the three sub-tasks of WN, WC, 
and WV.

• Meta-learning is helpful for all sub-tasks and has the most significant 
improvements on SC and SA.

Ablation Test

Zero-shot Text-to-SQL



Table 3: Results of zero-shot subset on WikiSQL and ESQL.
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• MC-SQL achieves greater improvements over SQLova on the zero-shot subsets of both WikiSQL 
(7.7% vs 4.0%) and ESQL (13.6% vs 10.2%).

• The contribution of table content is greater on zero-shot tables
• Meta-learning is also contributing to the WHERE clause when handling zero-shot tables.

Zero-shot Test

Zero-shot Text-to-SQL



• The MC-SQL equipped with all components always maintains optimal performance with different sizes of 
training data.

• When the training data is small, the improvement achieved by MC-SQL over SQLova is more significant, 
especially on WikiSQL.

• The less training data, the more significant the improvement brought by meta-learning.
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Zero-shot Text-to-SQL
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III. Few-shot Text-to-SQL
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Few-shot Text-to-SQL
Motivation

• Unannotated quetions provides the information to the few-shot tables.
• To learn the generic knowledge, the optimization object should focus on the common columns.

Readily available from previous user records
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Few-shot Text-to-SQL
Overview: MST-SQL

The architecture of our basic model. The procedure of our meta self-training framework.
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Few-shot Text-to-SQL
Basic Model

We adopt an encoder-subtask architecture to generate SQL, 
which refers to HydraNet [Lyu et al., 2020].

Encoder Module

Sub-task Module

Ø An original input (𝑞, 𝑇)	is decomposed into m column-
input	(𝑞, ℎ!).

Ø Each column-input includes column type, column 
header, filtered content, and NLQ.

Ø SQL generation is divided into six sub-tasks:
• SC: Predicting the column in the SELECT clause.

• SA: Predicting the aggregation function in the SELECT clause.

• WN: Predicting the number of conditions in the WHERE clause.

• WC: Predicting the column of the condition in the WHERE clause.

• WO: Predicting the operator of the condition in the WHERE clause.

• WV: Extract the value of the condition in the WHERE clause.

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang, Zheng Chen: Hybrid Ranking Network for Text-to-SQL. CoRR abs/2008.04759 (2020)



23

Few-shot Text-to-SQL

Meta Self-Training

𝒜 = 𝑎" 𝑎# . . . 𝑎 𝒜 , where 𝑎! = (𝑞!, 𝒯!, 𝑦!)

𝒰 = {𝑢", 𝑢#, . . . , 𝑢|𝒰|}, where	𝑢! = (𝑞!, 𝒯!)

Labeled Data:

Unlabeled Data:

Iterative Adaption

a. We propose a Column Specificity Meta-Learning (CSML) 
algorithm to improve the Column Selection Task(SC, WC) 
since they are typically table-sensitive tasks.

Meta-Learning for 
table-sensitive tasks
(SC, WC)

Mini-Batch training 
for all the sub-tasks  

b. The parameters are updated by optimizing the total loss of 
all the sub-tasks with the mini-batch training to further 
adopt semi-supervised learning.
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Few-shot Text-to-SQL

New objects： Column Specificity:

Each original sample (𝑞, 𝒯, 𝑦) is broken into column-
samples (𝑞, ℎ!, 𝑦'(, 𝑦)() and all of them are shuffled and 
sampled to form 𝑛 ML-tasks. The loss of each column-
sample is defined as

ℒ% = 𝐻(𝑃&' ℎ%|𝑞 , 𝑦&') + 𝐻(𝑃(' ℎ%|𝑞 , 𝑦(')

We define column specificity as

𝜇% =
𝑁)%&*%+'* ⋅ 𝑁%

𝑁*,*-#

SC and WC are logically transformed into 
classification tasks：

u ℎ! is irrelevant to 𝑞.

u ℎ! is the query target of 𝑞.

u ℎ! is one of the query conditions of 𝑞.

Column Specificity Meta-Learning(CSML)
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Few-shot Text-to-SQL
Results in Standard Text-to-SQL Setting

Results on original WikiSQL.“*” denotes using table 
contents or accessing databases during SQL generation. “+” 
denotes using extra knowledge (e.g., tabular pre-training). 

Ø The ST-only setting surprisingly 
achieves state-of-the-art results. 
It proves that self-training with 
unlabeled data can also 
improve the model in rich-
resource scenarios. 

Ø A possible reason for the drop 
brought by CSML is that mini-
batch can optimize parameters 
more stably than meta-learning 
with sufficient training data.

Strong End-to-End Model

Tabular Pre-trained Model



26

Few-shot Text-to-SQL

Results in Few-Shot Tests

For each dataset, we built four training sets by the shot number (WikiSQL: {1, 2, 3, 
4}, ESQL:{5, 10, 15, 20}), and construct validation and test sets with the same 
setting(4 / 100 samples each table for WikiSQL / ESQL).

Strong End-to-End Model

Tabular Pre-trained Model
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Few-shot Text-to-SQL

The Impact of Unlabeled Data Source

Ablation Study of CSML

Ablation Study of Self-Training 



28

IV. Conclusion
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• Table content works well for dealing with zero-shot tables and potential headers can be 
inferred from the semantic relevance of the questions and content.

• Meta-learning can improve the generalization ability of text-to-SQL models, which helps 
to handle not only few-shot tables but also zero-shot tables.

• Self-training can be used to handle few-shot text-to-SQL using unlabeled NLQs.
• The generic knowledge of common columns are more useful for text-to-SQL models to 

improve generalization capabilities.

Conclusion



Thank you for your listening !


