

Single-Table Text-to-SQL Technology for Few-Shot Scenarios

Yongrui Chen

School of Computer Science and Engineering, Southeast University, Nanjing, China

W/ALL

- I. Background of Single-Table Text-to-SQL
- II. Zero-shot Single-Table Text-to-SQL Leveraging Table Content for Zero-shot Text-to-SQL with Meta-Learning, AAAI-21
- III. Few-shot Single-Table Text-to-SQL Improving Few-Shot Text-to-SQL with Meta Self-Training via Column Specificity, IJCAI-22

REAL AND

IV. Conclusion

white

I. Background of Text-to-SQL

while

Relational databases store a vast amount of today's information and provide the foundation of applications.

customer relations management

financial markets

medical records

w Inl

- Structured Query Language (SQL)
 - Accessing relational databases
 - Machine understandable, Quick and efficient
 - Not user-friendly, requires deep understanding of the database and SQL syntax

Natural Language Question Text-to-SQL

Single-Table Text-to-SQL

Task definition

$$y = M(q,T)$$

$$T = \{h_1, h_2, \dots, h_l\}$$

Goal: learn model *M*

Question:

• *q*: NLQ

- *y*: SQL query
- *T*: table
- $h_i: i$ -th header

WikiSQL

Table: C	Table: CFLDraft								
Pick #	CFL Team	Player	Position	College					
27	Hamilton Tiger-Cats	Connor Healy	DB	Wilfrid Laurier					
28	Calgary Stampeders	Anthony Forgone	OL	York					
29	Ottawa Renegades	L.P. Ladouceur	DT	California					
30	Toronto Argonauts	Frank Hoffman	DL	York					

How many CFL teams are from York College?
SQL:
SELECT COUNT CFL Team FROM CFLDraft WHERE College = "York"
Result:

Background

WikiSQL SQL skeleton

SELECT \$AGG \$SEL (WHERE \$COL \$OP \$VAL) (AND \$COL \$OP \$VAL)*

• \$: slots

• *: zero or more AND clauses

- **1.** Select-Column(SC): find the column \$SEL in the SELECT clause from T.
- 2. Select-Aggregation(SA):

find the aggregation function \$AGG (€{NONE, MAX, MIN, COUNT, SUM, AVG}) of the column in the SELECT clause.

3. Where-Number(WN):

find the number of where conditions, denoted by N.

4. Where-Column(WC):

find the column (header) **\$COL** of each WHERE condition from T.

5. Where-Operator(WO):

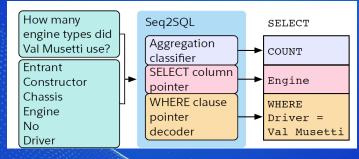
find the operator $OP (\in \{=; >; <\})$ of each COL in the WHERE clause.

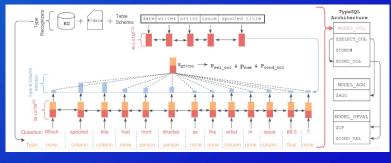
6. Where-Value(WV):

find the value \$VAL for each condition from the question, specifically, locating the starting position of the value in q.

Seq2Seq-based Methods

国燕鸽 燕錫濱湖





[Zhong, Xiong, and Socher 2017]; [Xu, Liu, and Song 2017]; [Yu et al. 2018]; [Dong and Lapata 2018]; [Chang et al. 2020]



• The SQL skeleton is not effectively used.

Multi task learning Ouestion Header 2 Header [CLS] what is the °°° [SEP] player [SEP] country °°° BERT **BERT** [Devlin et al. 2019] Trm Trm 000 HICLSI Hwhat His Hthe Hcountry Hplayer Trm RERT outpu STM-q Self attention olumn attention Column attention

[Hwang et al. 2019];[He et al. 2019]; [Lyu et al. 2020]; [Chen 4444] et al. 2021] ;[Guo et al. 2022]

- Pre-trained model Enhancement
- Multi-submodule framework

Background

customer relations management

- New product categories
- Target customer change

financial markets

Business expansion New Stock Issuance Policy Adjustment

medical records

- New Diseases (Covid 19)
- Section upgrade

MITAD

smart speakers

• New actions, skills, ...

WIND

Import knowledge

NLQ-SQL pairs that are difficult to collect annotations in a short period of time!

Few-shot Tables/ Zero-shot Tables

while

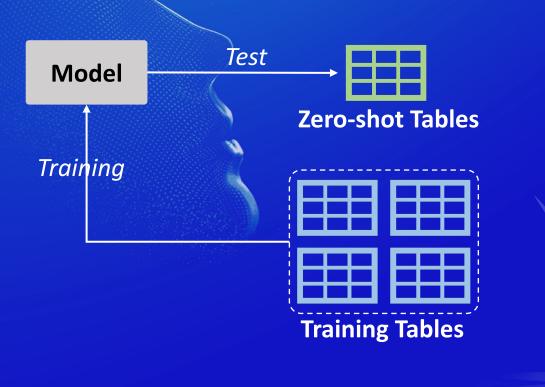
II. Zero-shot Text-to-SQL

while

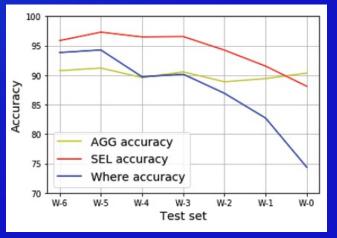
Few-shot/ Zero-shot performance

Challenge: Zero-shot Tables

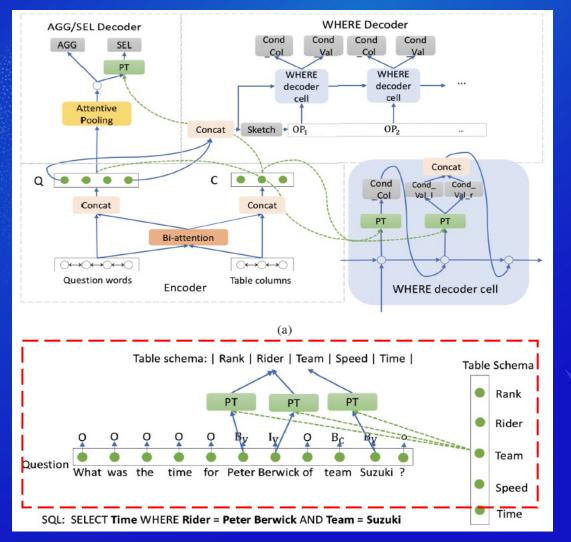
The tables whose schema are not visible in the training set.



[Dong and Lapata 2018]



[Hwang et al. 2018]



[Chang et al., 2020] An auxiliary task to model the mapping from the NLQ to headers

W ILL

11

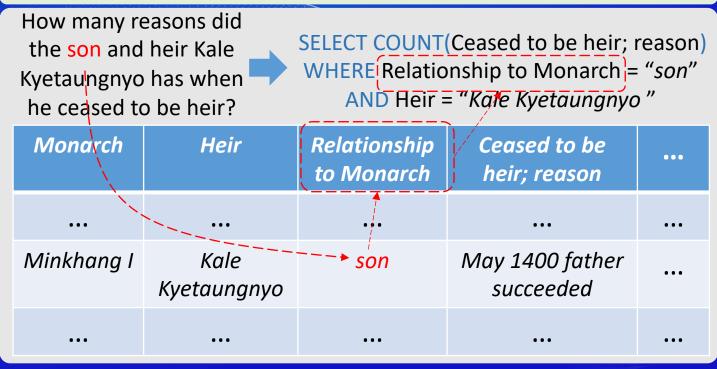
Annotations need to be built manually, which is *expensive*.

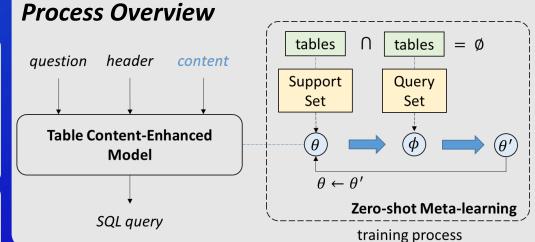
Chang, S.; Liu, P.; Tang, Y.; Huang, J.; He, X.; and Zhou, B. 2020. Zero-Shot Text-to-SQL Learning with Auxiliary Task. In AAAI 2020

12

Motivation

- **1. Table content** can provide abundant information for predicting headers.
- 2. Meta-learning can help the model learn the generalization ability between different tables from the training data.

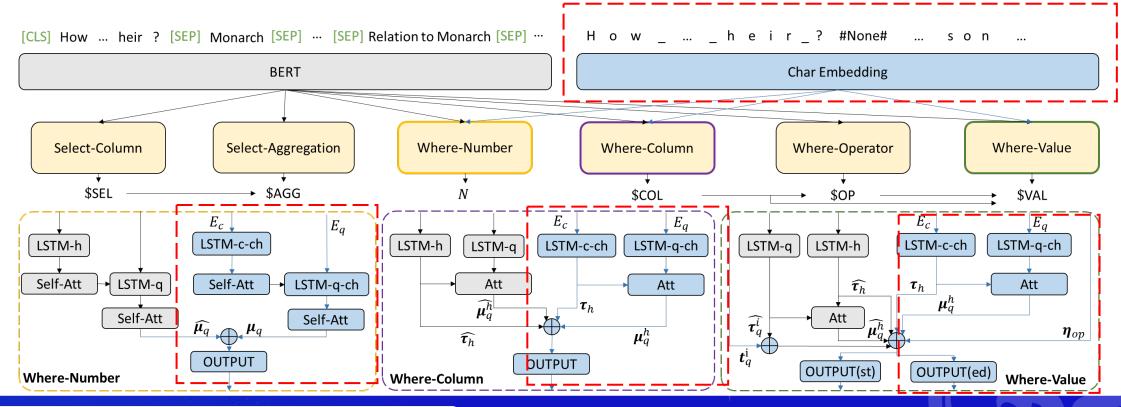




Preț	process
COa	arse-grained filtering
	$\varphi(c;q) = \max_{\mathbf{n}(q)} \frac{\operatorname{lcs}(\mathbf{n}(q),c)}{2 \mathbf{n}(q) } + \frac{\operatorname{lcs}(\mathbf{n}(q),c)}{2 c }$
•	n(q) : <i>n</i> -gram of q
•	x : the length of string x
•	lcs(zx, y) Longest Consecutive Common

Subsequence

Content-Enhanced Model



Encoding Module

- BERT [Devlin et al. 2019] for header
- Char-embedding for *content*

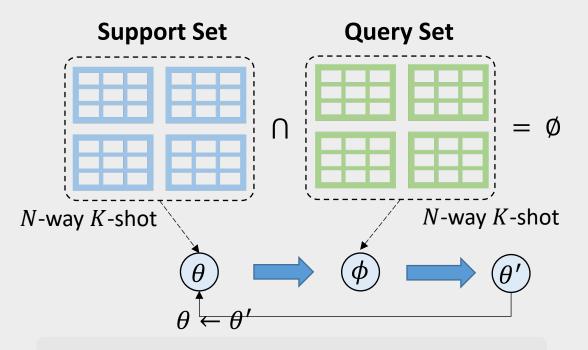
Where-Number, Where-Column, Where-Value Sub-Module

- LSTM (gray) for obtaining information of header.
- LSTM-c (blue) for obtaining information of content.

13

C

Zero-Shot Meta Learning Framework



- Simulate a zero-shot environment
- Get a possible gradient on the Support set and correct the gradient on the Query set

Algorithm 1 Zero-Shot Meta-Learning Framework

Require: A set of training samples $\mathcal{D} = \{(q^i, \mathcal{T}^i, y^i)\}$, where q^i is the *i*-th input question, t^i is the table which q^i relies on, and y^i is the gold SQL query of q^i . A model $\mathcal{M}(q, \theta)$, where θ is its parameters. Hyperparameters α , β and γ

1: while not done do

2: for all task do

- 3: Sample a support set $S = \{(q^j, \mathcal{T}^j, y^j)\} \subseteq D$
- 4: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{S}} = \nabla_{\theta} \Sigma_j \mathcal{L}(\mathcal{M}(q^j, \mathcal{T}^j, \theta), y^j)$
- 5: Update parameters with gradient descent: $\phi = \theta - \alpha \nabla_{\theta} \mathcal{L}_{S}$
- 6: Sample a query set $\mathcal{Q} = \{(q^k, \mathcal{T}^k, y^k)\} \subseteq \mathcal{D},$ where $\{\mathcal{T}^j\} \cap \{\mathcal{T}^k\} = \emptyset$
- 7: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{S}\leftarrow \mathcal{Q}} = \nabla_{\theta} \Sigma_k \mathcal{L}(\mathcal{M}(q^k, \mathcal{T}^k, \phi), y^k)$
- 8: Update θ to minimum \mathcal{L} using Adam optimizer with learning rate β ,

where $\mathcal{L} = \gamma \mathcal{L}_{\mathcal{S}} + (1 - \gamma) \mathcal{L}_{\mathcal{S} \leftarrow \mathcal{Q}}$

- 9: end for
- 10: end while

Experiments

Datasets

- WikiSQL [Zhong, Xiong, and Socher 2017]
 - English open-domain
 - 20K tables
 - 56,355 train; 8,421 dev; 15,878 test questions

• ESQL

- Chinese domain-specific
- 17 tables
- 10,000 train; 1,000 dev; 2,000 test questions
- On LF accuracy, our approach achieves state-ofthe-art results on the development set and ranks second only to HydratNet (-0.1%) on the test set.
- On EX accuracy, our approach achieves state-ofthe-art results on both the sets.

Approach	Dev LF	Dev EX	Test LF	Test EX
Seq2SQL	49.5	60.8	48.3	59.4
Coarse2Fine	72.5	79.0	71.7	78.5
Auxiliary Mapping	76.0	82.3	75.0	81.7
SQLova (-)	80.3	85.8	79.4	85.2
SQLova (*)	81.6	87.2	80.7	86.2
X-SQL (*)	83.8	89.5	83.3	88.7
HydratNet (*)	83.6	89.1	83.8	89.2
TaBERT-k1 (-)	83.1	88.9	83.1	88.4
TaBERT-k3 (-)	84.0	89.6	83.7	89.1
MC-SQL (-)	84.1	89.7	83.7	89.4

Table 1: Overall results on WikiSQL. "x(-)" denotes the model x with BERT-base. "x(*)" denotes the model x with BERT-large or larger pre-trained model, such as MTDNN in X-SQL or tabular-specified TaBERT.

Compared with the table-specific pre-trained model (TaBERT), our model still has advantages **without pre-training on table corpus**.

Ablation Test

- w/o table content(TC) Remove all the processes in WN, WC, and WV.
- w/o value linking(VL) Retain the processes related to TC but remove the value linking in WV
- w/o meta-learning(ML) Replace the metalearning strategy with the traditional mini-batch strategy.

Dataset	Model	SC	SA	WN	WC	WO	WV	LF
	SQLova TaBERT-k1	96.7 / 96.3 97.2 / 97.1	90.1 / 90.3 90.5 / 90.6	98.4 / 98.2 98.9 / 98.8	94.1 / 93.6 96.1 / 96.1	97.1 / 96.8 97.9 / 97.8	94.8 / 94.3 96.7 / 96.6	80.2 / 79.7 83.1 / 83.1
	TaBERT-k3	97.3 / 97.1 97.3 / 97.1	90.3790.8 91.1 / 91.2	98.9798.8 98.8/98.7	96.6 / 96.4	97.5 / 97.5	96.6 / 96.2	83.9 / 83.7
WikiSQL	MC-SQL	96.9 / 96.4	90.5 / 90.6	99.1 / 98.8	97.9 / 97.8	97.5 / 97.8	96.7 / 96.9	84.1 / 83.7
	w/o TC	97.0 / 96.5	89.8 / 90.0	98.6 / 98.3	94.5 / 93.7	97.2 / 97.0	94.7 / 94.7	79.9 / 79.2
	w/o VL	97.0 / 96.7	90.4 / 90.8	99.0 / 98.7	98.0 / 97.6	97.5/97.2	95.6/95.5	82.9 / 83.0
	w/o ML	96.5 / 96.2	90.4 / 90.4	98.9 / 98.7	97.8 / 97.4	97.5 / 97.4	96.5 / 96.1	83.2 / 82.9
	SQLova	96.2 / 95.9	98.9 / 99.0	98.5 / 98.4	84.6 / 84.1	96.5 / 95.8	89.9 / 89.6	72.0/71.5
	MC-SQL	97.2 / 97.3	99.1 / 99.2	98.9 / 98.9	93.6 / 93.3	97.5 / 96.8	92.9 / 92.6	82.8 / 82.7
ESQL	w/o TC	95.9 / 96.1	99.2 / 99.1	98.8 / 98.3	84.5 / 84.4	96.7 / 96.2	90.5 / 90.3	72.9 / 72.1
	w/o VL	96.5 / 96.7	99.3 / 98.9	98.9 / 98.8	93.5 / 93.5	97.4 / 96.9	92.0/91.8	82.1 / 81.9
	w/o ML	96.2 / 96.0	98.8 / 98.9	98.9 / 98.8	92.4 / 92.7	97.5 / 96.7	92.7 / 92.3	82.3 / 81.9

Table 2: Results of sub-tasks on WikiSQL and ESQL.

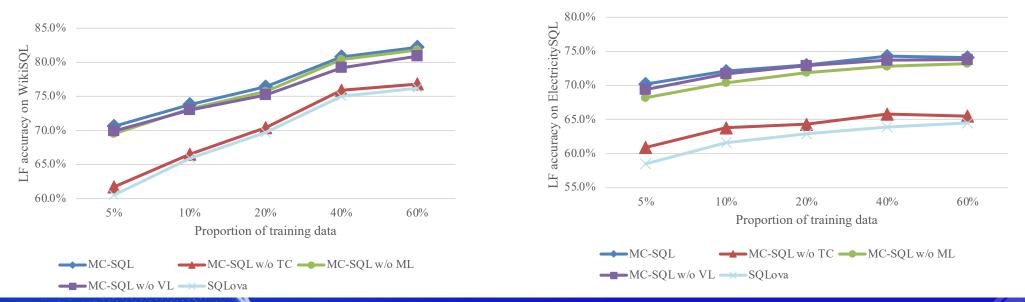
- Total MC-SQL achieves the optimal results on LF accuracy and most sub-tasks.
- the contribution of TC is mainly reflected in the three sub-tasks of WN, WC, and WV.
- Meta-learning is helpful for **all** sub-tasks and has the most significant improvements on SC and SA.

Zero-shot Test

Dataset	Model	SC	SA	WN	WC	WO	WV	LF
WikiSQL (zero-shot)	SQLova TaBERT-k1 TaBERT-k3 MC-SQL w/o TC w/o VL w/o ML	95.8 / 95.2 96.6 / 96.4 96.7 / 96.4 96.4 / 95.5 96.2 / 95.7 96.2 / 95.8 95.7 / 95.0	89.7 / 89.3 91.0 / 91.0 91.6 / 91.5 91.1 / 91.0 91.0 / 90.5 90.6 / 90.9 90.4 / 90.2	97.6 / 97.4 98.6 / 98.4 98.2 / 98.2 98.7 / 98.1 97.6 / 97.7 98.7 / 98.0 98.5 / 98.2	91.1 / 90.4 94.8 / 94.6 95.1 / 95.0 96.6 / 96.3 91.5 / 90.7 97.1 / 96.3 96.0 / 95.8	95.9 / 95.7 97.7 / 97.5 96.8 / 97.0 97.1 / 96.7 96.2 / 96.1 97.1 / 96.3 96.8 / 96.7	90.1 / 90.5 95.3 / 94.6 94.9 / 94.2 94.8 / 94.2 90.5 / 90.8 91.7 / 92.1 94.0 / 93.5	74.7 / 72.8 81.3 / 80.5 82.0 / 81.2 82.4 / 80.5 75.8 / 73.6 79.0 / 79.1 81.2 / 79.4
ESQL (zero-shot)	SQLova MC-SQL w/o TC w/o VL w/o ML	94.3 / 94.0 94.6 / 94.2 94.4 / 94.1 93.8 / 94.0 93.5 / 93.0	97.8 / 97.9 98.0 / 98.0 98.1 / 98.2 98.0 / 98.1 97.7 / 97.9	97.3 / 97.0 97.5 / 97.3 97.1 / 97.2 97.4 / 97.2 97.4 / 96.9	80.5 / 80.7 93.7 / 92.0 80.7 / 80.6 92.6 / 91.1 93.2 / 91.8	95.9 / 94.6 96.2 / 94.8 95.5 / 94.2 95.1 / 94.8 96.0 / 94.3	87.8 / 86.7 91.9 / 90.5 88.4 / 87.6 90.9 / 90.1 91.2 / 90.2	62.9 / 61.2 76.7 / 74.8 64.7 / 63.3 75.7 / 73.7 75.2 / 72.9

Table 3: Results of zero-shot subset on WikiSQL and ESQL.

- MC-SQL achieves greater improvements over SQLova on the zero-shot subsets of both WikiSQL (7.7% vs 4.0%) and ESQL (13.6% vs 10.2%).
- The contribution of table content is **greater** on zero-shot tables
- Meta-learning is also contributing to the WHERE clause when handling zero-shot tables.



LF on WikiSQL with proportions of training data.

LF on ESQL with proportions of training data.

- The MC-SQL equipped with all components always maintains **optimal** performance with different sizes of training data.
- When the training data is **small**, the improvement achieved by MC-SQL over SQLova is **more significant**, especially on WikiSQL.
- The less training data, the more significant the improvement brought by meta-learning.

white

19

III. Few-shot Text-to-SQL

while

Motivation

Readily available from previous user records

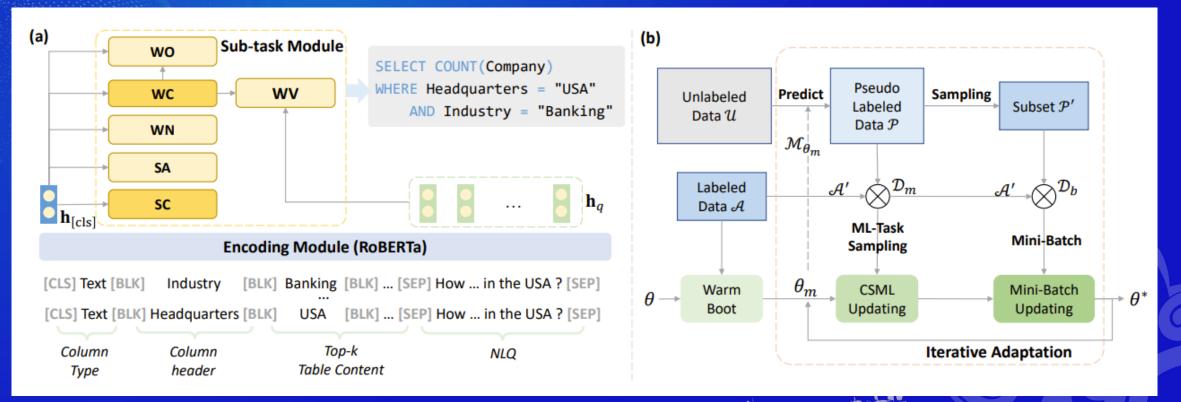
- Unannotated quetions provides the information to the few-shot tables.
- To learn the generic knowledge, the optimization object should focus on the common columns.

Table 1					
Company	Headquarters	Industry	•••	Profits	Market Value
Citigroup	USA	Banking	•••	21.54	247.42

Table 2

Title	Author	Company	•••	Format	Release Date
Doctor Who and the Cave Monsters	Malcolm Hulke	BBC		4-CD	2007-09-03
	•••		•••	•••	

Overview: MST-SQL

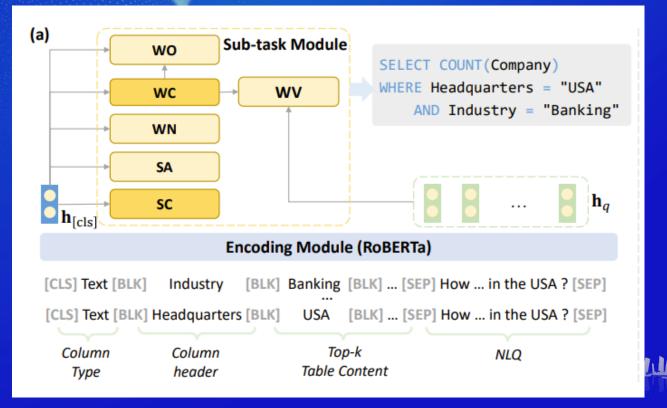


The architecture of our basic model.

The procedure of our meta self-training framework.

Basic Model

We adopt an encoder-subtask architecture to generate SQL, which refers to HydraNet [Lyu et al., 2020].



Encoder Module

- An original input (q, T) is decomposed into m columninput (q, h^i) .
- Each column-input includes column type, column header, filtered content, and NLQ.

Sub-task Module

- SQL generation is divided into six sub-tasks:
- SC: Predicting the column in the SELECT clause
- SA: Predicting the aggregation function in the SELECT clause.
- WN: Predicting the number of conditions in the WHERE clause.
- WC: Predicting the column of the condition in the WHERE clause
- WO: Predicting the operator of the condition in the WHERE clause.
- WV: Extract the value of the condition in the WHERE clause.

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang, Zheng Chen: Hybrid Ranking Network for Text-to-SQL. CoRR abs/2008.04759 (2020)

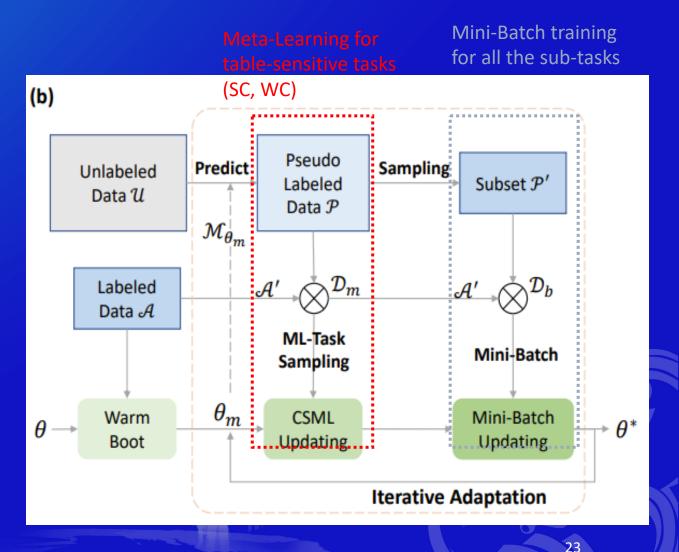
Meta Self-Training

Labeled Data: $\mathcal{A} = \{a^1, a^2, \dots, a^{|\mathcal{A}|}\}, \text{ where } a^i = (q^i, \mathcal{T}^i, y^i)$

Unlabeled Data: $\mathcal{U} = \{u^1, u^2, \dots, u^{|\mathcal{U}|}\}$, where $u^i = (q^i, \mathcal{T}^i)$

Iterative Adaption

- a. We propose a Column Specificity Meta-Learning (CSML) algorithm to improve the Column Selection Task(SC, WC) since they are typically table-sensitive tasks.
- b. The parameters are updated by optimizing the total loss of all the sub-tasks with the mini-batch training to further adopt semi-supervised learning.



Column Specificity Meta-Learning(CSML)

New objects:

Each original sample (q, \mathcal{T}, y) is broken into columnsamples (q, h^i, y_{sc}, y_{wc}) and all of them are shuffled and sampled to form n ML-tasks. The loss of each columnsample is defined as

$$\mathcal{L}^{i} = H(P_{sc}(h^{i}|q), y_{sc}) + H(P_{wc}(h^{i}|q), y_{wc})$$

SC and WC are logically transformed into classification tasks:

- \blacklozenge h^i is irrelevant to q.
- \blacklozenge h^i is the query target of q.
- h^i is one of the query conditions of q.

Column Specificity:

We define column specificity as

$$\mu^{i} = \frac{N_{distinct} \cdot N^{i}}{N_{total}}$$

Table 1					
Company	Headquarters	Industry	•••	Profits	Market Value
Citigroup	USA	Banking	•••	21.54	247.42
	•••	•••	•••	•••	
Table 2				1	
Title	Author	Company	•••	Format	Release Date
Doctor Who and the Cave Monsters	Malcolm Hulke	BBC		4-CD	2007-09-03
	•••	•••	•••	•••	

Results in Standard Text-to-SQL Setting

Method	Dev.LF	Dev.EX	Test.LF	Test.EX
SQLOVA	81.6	87.2	80.7	86.2
X-SQL	83.8	89.5	83.3	88.7
HydraNet	83.6	89.1	83.8	89.2
MC-SQL*	84.1	89.7	83.7	89.4
IE-SQL+	84.6	88.7	84.6	88.8
SeaD	84.9	90.2	84.7	90.1
SDSQL+	86.0	91.8	85.6	91.4
BRIDGE*	86.2	91.7	85.7	91.1
TAPAS*+	85.1	-	83.6	-
TABERT*+	84.0	89.6	83.7	89.1
Grappa*+	85.9	-	84.7	-
MST-SQL*+	85.7	90.8	85.4	90.3
Basic*	85.6	91.2	85.0	90.8
ST-only*+	86.4	91.9	85.8	91.6

Results on original WikiSQL."*" denotes using table contents or accessing databases during SQL generation. "+" denotes using extra knowledge (e.g., tabular pre-training).

Strong End-to-End Model

Tabular Pre-trained Model

Red I v D

The ST-only setting surprisingly achieves state-of-the-art results

It proves that self-training with unlabeled data can also improve the model in richresource scenarios.

A possible reason for the drop brought by CSML is that minibatch can optimize parameters more stably than meta-learning with sufficient training data.

w Ind

Results in Few-Shot Tests

:		Wiki	SQL			ES	SQL	
Method	1-SHOT	2-SHOT	3-SHOT	4-SHOT	5-SHOT	10-SHOT	15-SHOT	20-SHOT
SQLOVA	23.3	40.8	48.7	55.3	22.3	39.6	52.0	54.7
MC-SQL	52.0	62.9	71.0	73.8	36.5	53.2	60.5	67.4
HydraNet	64.2	69.9	72.9	74.3	43.6	58.1	70.5	76.7
BRIDGE	53.6	68.9	73.1	77.3	-	-	-	-
TABERT	57.5	67.4	71.2	72.5	-	-	-	-
Grappa	72.8	76.8	78.0	78.1	-	-	-	-
MST-SQL	78.4	80.5	82.1	83.2	55.3	67.4	76.7	80.5
Basic	69.6	74.3	76.3	77.3	45.3	60.2	72.2	77.7
ST-only	75.8	78.6	79.4	81.1	51.2	64.5	74.2	80.2

For each dataset, we built four training sets by the shot number (WikiSQL: {1, 2, 3, 4}, ESQL:{5, 10, 15, 20}), and construct validation and test sets with the same setting(4 / 100 samples each table for WikiSQL / ESQL).

er Alle I

Strong End-to-End Model

Tabular Pre-trained Model

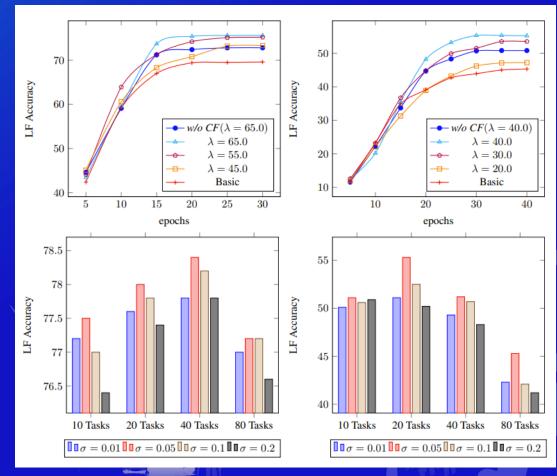
The Impact of Unlabeled Data Source

Method	1-SHOT	2-SHOT	3-SHOT	4-SHOT
Basic	69.6	74.3	76.3	77.3
ST-only wtq	72.2	75.5	76.8	77.9
ST-only _{wiki}	75.8	78.6	79.4	81.1
$MST-SQL_{wtq}$	72.9	77.1	77.4	78.2
MST-SQL _{wiki}	78.4	80.5	82.1	83.2

Ablation Study of CSML

	Method	SC	SA	WN	WC	WO	WV	LF
WikiSQL	MST-SQL	98.2	86.7	95.5	93.7	94.4	93.5	78.4
	w/o OB	97.8	87.2	95.8	93.0	94.0	92.5	77.3
	w/o CS	97.4	88.2	93.4	91.6	92.9	92.8	77.2
	w/o OB & CS	96.9	87.5	94.9	92.7	93.4	92.5	76.4
	ST-only	96.4	86.1	95.7	91.5	93.0	92.4	75.8
ESQL	MST-SQL	93.3	82.9	86.5	80.7	90.0	87.1	55.3
	w/o OB	91.5	82.2	85.5	77.1	88.1	85.7	53.1
	w/o CS	91.2	80.4	86.3	76.9	88.8	86.2	52.8
	w/o OB & CS	91.5	80.5	85.1	77.3	87.8	86.5	52.4
	ST-only	91.2	83.9	86.1	74.2	86.5	84.8	51.2

Ablation Study of Self-Training



while

28

IV. Conclusion

w IND

- Table content works well for dealing with zero-shot tables and potential headers can be inferred from the semantic relevance of the questions and content.
- Meta-learning can improve the generalization ability of text-to-SQL models, which helps to handle not only few-shot tables but also zero-shot tables.
- Self-training can be used to handle few-shot text-to-SQL using unlabeled NLQs.
- The generic knowledge of common columns are more useful for text-to-SQL models to improve generalization capabilities.

white

Thank you for your listening !

will.