

Continual Text-to-SQL

Yongrui Chen

School of Computer Science and Engineering, Southeast University

• Relational databases store a vast amount of today's information and provide the foundation of applications.

customer relations management

financial markets

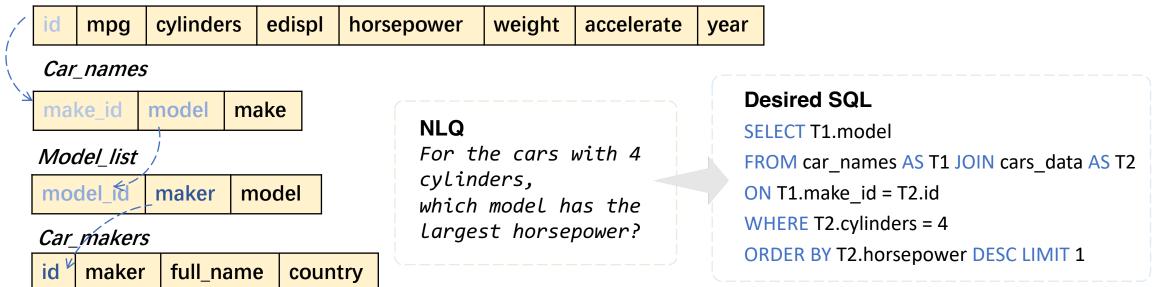
medical records

- Structured Query Language (SQL)
 - Accessing relational databases
 - Machine understandable, Quick and efficient
 - Not user-friendly, requires deep understanding of the database and SQL syntax

- Text-to-SQL
 - (Semantic Parsing) Transform Natural Language Question (NLQ) to SQL
 - Input: NLQ + database schema
 - Output: an SQL query

Database Schema

Cars_data



Different scenarios

- Single-Table Text-to-SQL (Zhong et al., 2017)
 - Only one table
 - No complex SQL syntax
 - **Solution:** Encoder + multi-task
- Multi-Table Text-to-SQL (Yu et al., 2018)
 - Multiple tables joined by foreign keys
 - Complex SQL syntax, e.g., GROUP BY, nested query, ...
 - Solution: Encoder-Decoder
- Conversational Text-to-SQL (Yu et al., 2019)
 - Multiple tables joined by foreign keys
 - Complex SQL syntax, e.g., GROUP BY, nested query, ...
 - Multiple NLQs
 - In context
 - Solution: Encoder-Decoder + Context information

Question: How many CFL teams are from York College? SQL: SELECT COUNT CFL Team FROM CFLDraft WHERE College = "York"	WikiSQL
Domain Academic Journal JID Homepage Name Publication PID Abstract Title JID Year Return me the number of papers on PVLDB SQL SELECT COUNT (DISTINCT t2.title) FROM Publication AS T2 JOIN Journal AS T1 ON T2.JID = T1.JID WHERE T1.name = "PVLDB"	Spider
 D₂: Database about shipping company containing 13 tables C₂: Find the names of the first 5 customers. Q₁: What is the customer id of the most recent customer? S₁: SELECT customer_id FROM customers ORDER BY date_became_customer DESC LIMIT 1 Q₂: What is their name? S₂: SELECT customer_name FROM_customers ORDER BY date_became_customer DESC LIMIT 1 Q₃: How about for the first 5 customers? S₃: SELECT_customer_name FROM_customers ORDER BY date_became_customer LIMIT 5 	SParC

Different scenarios

- Fixed data set (WikiSQL, Spider, Sparc,...,
 - Unchanging data distribution
 - Inability to adapt or expand the behavior over______ In-domain
 - Uncommon in real-world scenarios
- Data stream (What we care about)
 - Changing data distribution
 - Require adapting or expanding the behavior over time
 - Common in real-world scenarios
 - Ideal Intelligence

customer relations management

- New product categories
- Target customer change

financial markets

- Business expansion
- New Stock Issuance
- Policy Adjustment

medical records

- New Diseases (Covid 19)
- Section upgrade

smart speakers

- New actions, skills, ...
- Import knowledge

In-domain

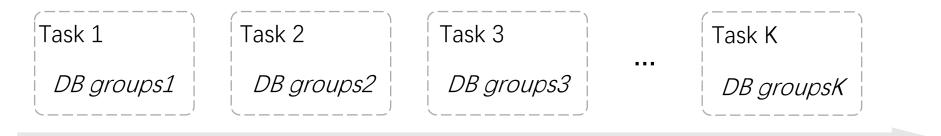
nair

. Kos<u>s</u>-domain

CUSTOMER RELATIONSHIP

Challenge

A task stream is regarded as a sequence of *tasks*, each of which is a text-to-SQL task, but for a database not previously seen.



- Limited supervised data.
 - High cost of SQL annotation \rightarrow A small amount of supervised data
- Costly full volume retraining.
 - Training models from scratch on all seen tasks \rightarrow Too costly
- Catastrophic forgetting.
 - Continually fine-tune models for each task \rightarrow Performance drop on the previous task

Learn from Yesterday: A Semi-Supervised Continual Learning Method for Supervision-Limited Text-to-SQL Task Streams

Yongrui Chen¹, Xinnan Guo¹, Tongtong Wu^{1,2}, Guilin Qi¹, Yang Li³, Yang Dong⁴

School of Computer Science and Engineering, Southeast University
 Department of Data Science & AI, Monash University
 Alibaba Crown

3 Alibaba Group

4 Ant Group

AAAI 2023

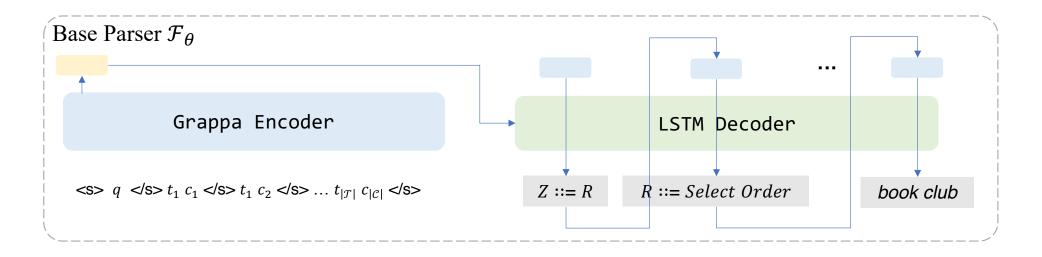
A base text-to-SQL parser

Following SOTA (Wang et al., 2019), (Lin et al., 2020), (Cao et al., 2021), we construct a strong encoder-decoder model as the base parser \mathcal{F}_{θ} .

- A strong table semantic parsing PLM, Grappa (Yu et al., 2021), as the encoder;
- An LSTM as the decoder;
- Grammar-based decoding using SemQL (Guo et al., 2019);

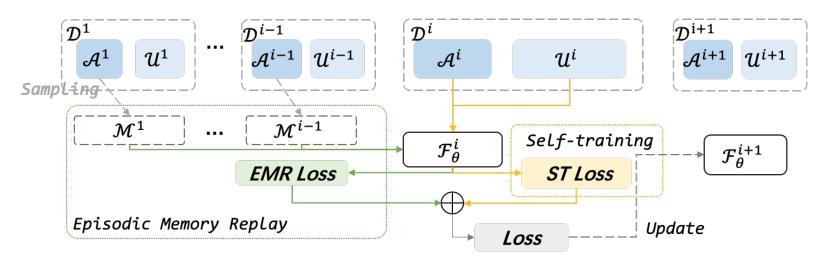
SemQL Grammar

```
Z ::= intersect R R \mid union R R \mid except R R \mid R
          R ::= Select | Select Filter | Select Order
               | Select Superlative | Select Order Filter
               | Select Superlative Filter
     Select ::= A | A A | A A A | A A A A | A A A A | A A \cdots A
     Order ::= asc A \mid desc A
Suerlative ::= most A | least A
    Filter ::= and Filter Filter filter Filter
               | > A | > A R | < A | < A R
               | \geq A | \geq A R | = A | = A R
               |\neq A | \neq A R | between A
               | like A | not like A | in A R | not in A R
         A ::= \max C T \mid \min C T \mid count C T
              | sum C T | avg C T | none C T
         C ::= column
          T ::= table
```



A Vanilla Solution

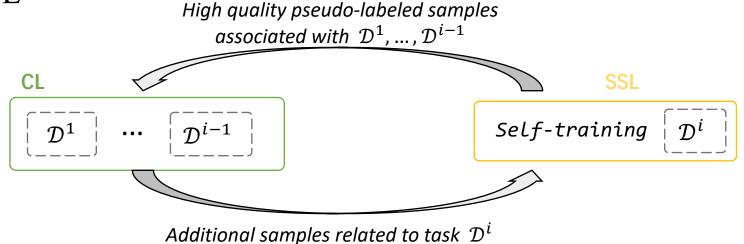
- Rigidly combines CL and SSL
- SSL method: *Self-training (ST)*
 - Most used in semantic parsing
 - Good performance on few-shot text-to-SQL, (Guo et al., 2022)
- CL method: Episodic Memory Replay (EMR)
 - Simple process, suitable for complex structured text-to-SQL models
 - Best performance in CL methods for semantic parsing, (Li et al., 2021)



- Semi-Supervised Learning (SSL) eases over-fitting and improves model generalizability.
- Continual Learning (CL) provides an alternative cost-effective training paradigm.

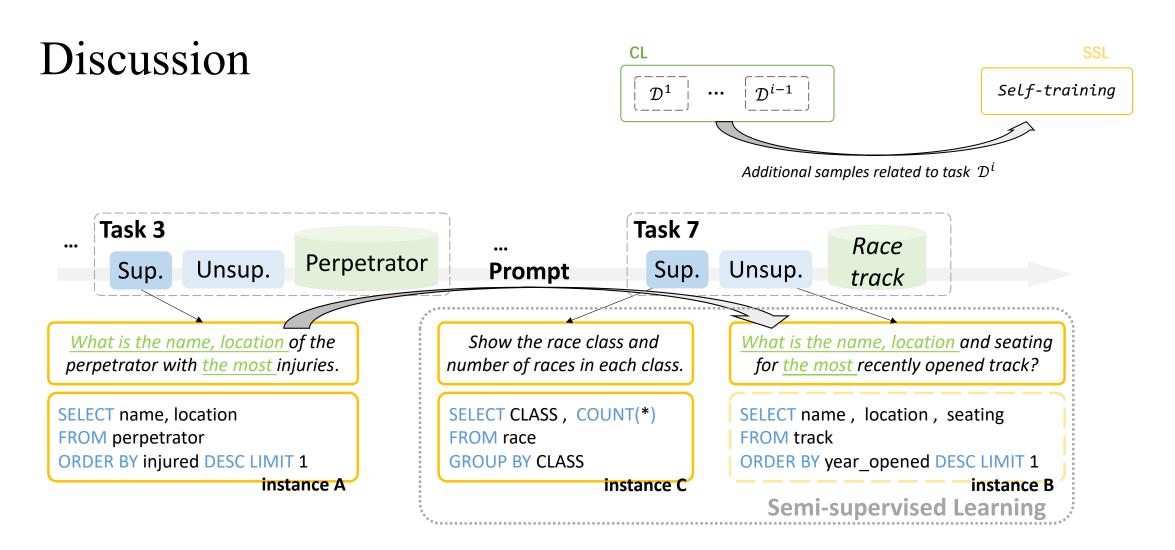
Discussion

- Differences in learning goals
 - SSL focuses on the optimal solution on a single task (current task).
 - CL is more concerned with maintaining performance on previous tasks.
- Promotion of CL and SSL



• Features of Text-to-SQL tasks

- SQL structures & schema instances
- Combinatorial generalization

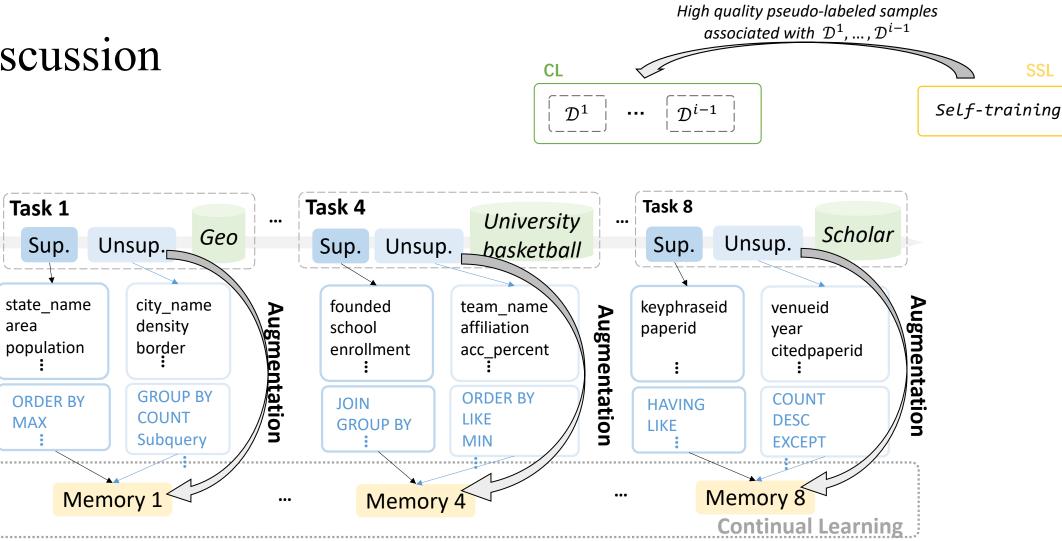


- Although instances A and B are associated with different databases, the target SQL of A is similar to that of B.
- The parser might learn from A on how to predict the pseudo-label of B.

Discussion

area

MAX



• High-quality pseudo-labeled instances can also enrich the memory of past tasks.

Soft-fusion Network

- *Teacher-Student architecture* for the differences in learning goals of CL and SSL.
 - TEACHER \rightarrow SSL; STUDENT \rightarrow CL;
- *Dual sampling* for the complementarity of CL and SSL.
 - Teacher sampling and student sampling
 - provides effective information supplement for TEACHER and STUDENT

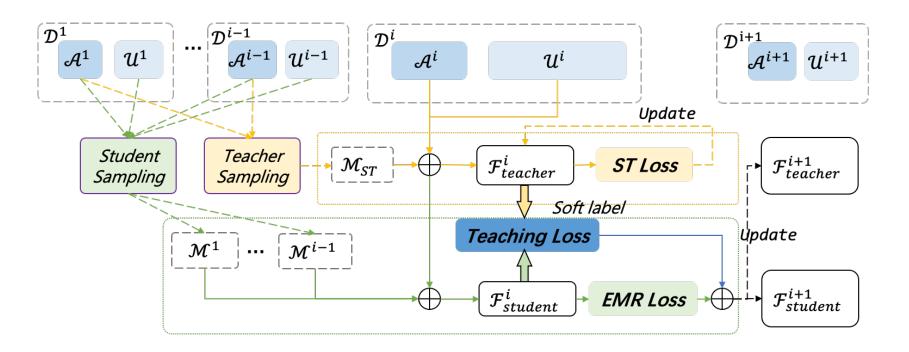


Table 1: Experimental results for comparison with baselines.	Table 1: Experimental	results for con	nparison with	n baselines.
--	-----------------------	-----------------	---------------	--------------

• Overall Results

	Method		Spider				WikiSQL			
			ACC _w	BWT	FWT	ACC _a	ACC _w	BWT	FWT	
	Fine-tune	47.5	45.5	-11.3	38.4	69.8	69.2	-1.5	63.0	
SSL-only methods	SELF-TRAINING (Goldwasser et al. 2011)	48.3	46.6	-10.9	40.4	70.4	69.9	-3.3	63.5	
	SETNET (Wang et al. 2020b)	47.8	46.1	-14.6	41.6	70.7	70.2	-2.1	61.8	
	MST-SQL (Guo et al. 2022)	49.6	47.3	-6.6	40.7	70.7	70.1	-1.7	61.7	
	EWC (Kirkpatrick et al. 2016)	48.3	47.2	-7.9	38.4	70.0	69.6	-2.0	61.4	
CL-only methods	HAT (Serrà et al. 2018)	49.4	47.7	-8.4	39.3	70.0	69.6	-1.4	61.8	
	EMR (Wang et al. 2019)	50.1	49.1	-3.2	40.3	71.1	70.7	-2.2	63.1	
	EMAR (Han et al. 2020)	50.3	49.6	-4.6	40.4	70.8	70.5	-1.5	62.7	
	APPER (Mi et al. 2020)	50.7	49	-7.7	40.0	70.2	69.9	-3.0	62.7	
_	TOTAL-RECALL (Li, Qu, and Haffari 2021)	53.4	51.6	-5.1	40.3	71.5	71.1	-2.1	62.7	
Our Solutions	VANILLA	53.9	52.9	-4.0	40.6	72.2	71.9	-2.0	64.0	
	SFNET	56.0	53.6	-1.0	45.9	73.6	73.3	-2.3	65.6	
L	ORACLE (all tasks w/o Unsup.)	62.9	63.4	5.2	48.7	73.1	72.7	2.6	64.2	

- VANILLA outperforms all the baselines in terms of ACC_a and ACC_w;
- SFNET further improves its ACCa by 1.4% (WikiSQL) and 2.1% (Spider) and achieves SOTA performance in almost all metrics on two datasets.

• Results till the Seen Tasks

65 FINE-TUNE 65 SELF-TRAINING 45SETNET 60 60 MST-SQL EWC 40ACCa 55BWT FWT ACCw HAT 55EMR -1535EMAR 5050APPER -- TOTAL-RECALL -2030 VANILLA 45SFNET --251 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 $2 \ 3 \ 4$ 6 7 8 2 5 6 7 8 9 $\mathbf{5}$ 9 10 1 3 4

- SFNET (blue) is always more stable than the other baselines in all metrics and this stability becomes more pronounced as the number of tasks grows.
- Almost all methods in BWT improves slightly as the number of tasks increases.

ACCa, ACC_w, BWT, FWT till the seen tasks on Spider after learning on each task sequentially.

Parameterizing Context: Unleashing the Power of Parameter-Efficient Fine-Tuning and In-Context Tuning for Continual Table Semantic Parsing

Yongrui Chen, Shenyu Zhang, Guilin Qi, Xinnan Guo

School of Computer Science and Engineering, Southeast University

NeurIPS 2023

A base text-to-SQL parser

we utilize T5 (Raffel et al., 2020) as the base parser \mathcal{F}_{θ} . In particular, each input pair X = (Q, S) is flattened into a plain text,

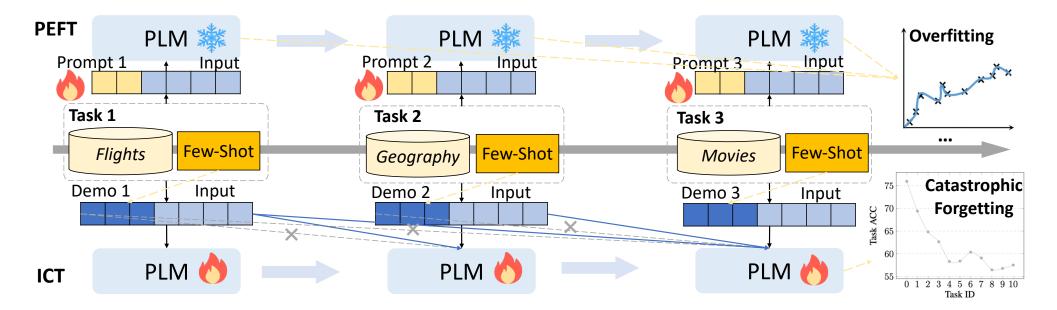
$$\mathcal{X}' = t_1 : c_1^{t_1}, c_2^{t_1}, \dots, c_{m_1}^{t_1}; t_2 : c_1^{t_2}, c_2^{t_2}, \dots, c_{m_2}^{t_2}; \dots | \mathcal{Q},$$

where $c_j^{t_i}$ denotes the *j*-th column name of the *i*-th table, and ":", ",", and "|" are predefined separators.

$$P(\tilde{\mathcal{Y}}|\mathcal{X}',\theta) = \prod_{j=1}^{|\tilde{\mathcal{Y}}|} P(\tilde{y}_j|\mathbf{X}',\tilde{y}_{< j},\theta)$$

A Vanilla Solution

- Rigidly combines ICT and PEFT
- ICT method: *In-context Tuning*
 - Convenient in semantic parsing
 - Good performance on few-shot learning, (Min, et al., 2022)
- PEFT method: *Prompt-Tuning*
 - Simple process, suitable for complex structured text-to-SQL models
 - Best performance in CL methods for semantic parsing, (Zhu et al., 2022)

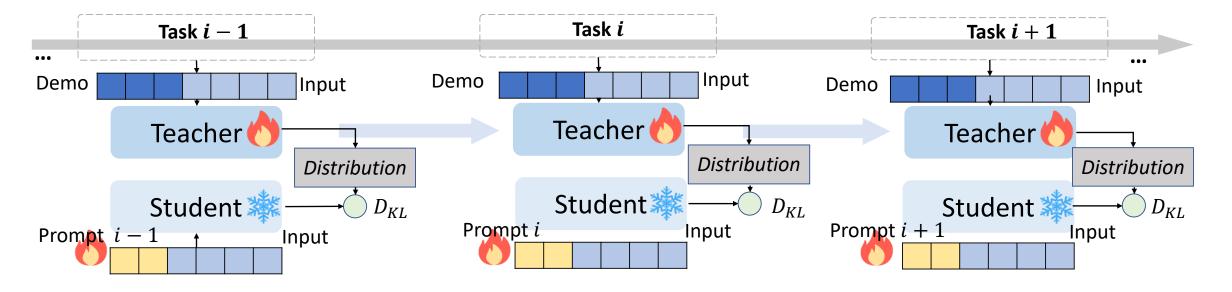


- In-context tuning (ICT) for limited supervision;
- Parameter-efficient fine-tuning (PEFT) for catastrophic forgetting by saving soft prompts;

Context-Compressed Continual (C3) Parser

Teacher-student framework:

- TEACHER addresses the few-shot problem using ICT, which procures contextual information by demonstrating a few training examples.
- STUDENT leverages the proposed PEFT framework to learn from the teacher's output distribution, and subsequently compresses and saves the contextual information to the prompts, without storing any training examples.



• Overall Results

Table 1: Experimental results for comparison with baselines in 3 random task orders. Means and standard variations are reported. The absence of standard deviation for PEFT and C3 is due to the fact that their performance is order-independent. \blacklozenge indicates using the replayed memory of size 15 and \clubsuit indicates using additional unsupervised data.

Backbone	Method	Spider-Stream			Combined-Stream			
Dackbuile	Methou	TA (%)	EA (%)	MD (%)	TA (%)	EA (%)	MD (%)	
	Fine-Tuning	$56.9_{1.0}$	$54.6_{1.0}$	$-18.8_{1.5}$	$37.6_{1.8}$	$43.9_{0.9}$	$-39.1_{2.2}$	
	MAML [8]	$52.2_{1.3}$	$49.1_{1.5}$	$-19.5_{2.2}$	$31.3_{1.3}$	$37.2_{1.4}$	$-43.8_{1.5}$	
GRAPPA	ICT [13]	$57.0_{1.4}$	$54.3_{2.2}$	$-17.1_{2.1}$	$37.9_{4.0}$	$43.9_{1.8}$	$-37.4_{4.4}$	
-LARGE	EWC [28]	$57.5_{3.3}$	$55.1_{2.4}$	$-17.7_{3.9}$	$37.0_{1.9}$	$44.1_{0.9}$	$-38.4_{2.2}$	
(340M)	HAT [<mark>29</mark>]	$57.8_{2.9}$	$54.8_{3.4}$	$-17.0_{3.3}$	$38.5_{4.1}$	$45.0_{2.0}$	$-37.6_{5.5}$	
. ,	EMR (27]	$65.2_{0.2}$	$62.9_{0.6}$	$-9.4_{0.8}$	$60.9_{0.7}$	$58.6_{1.8}$	$-10.3_{1.8}$	
	EMAR [®] [30]	$62.8_{1.2}$	$60.8_{1.2}$	$-10.5_{1.1}$	$63.1_{1.8}$	$60.8_{0.9}$	$-7.7_{2.6}$	
	APPER [31]	$57.9_{1.6}$	$55.8_{1.7}$	$-17.2_{2.6}$	$37.1_{2.4}$	$44.0_{0.6}$	$-38.3_{2.9}$	
	TR 🕈 [1]	$57.9_{1.2}$	$55.1_{1.4}$	$-15.8_{1.5}$	$59.7_{1.0}$	$56.3_{1.1}$	$-11.9_{0.7}$	
	SFNET [‡] [7]	-	-	-	$60.7_{0.9}$	$57.0_{1.9}$	$-6.0_{1.2}$	
	EMR ⁽²⁷⁾	$60.3_{0.9}$	$56.6_{0.1}$	$-13.4_{0.2}$	$62.6_{0.4}$	$60.0_{1.4}$	$-6.5_{0.6}$	
T5-base	EMAR [•] [30]	$57.2_{0.4}$	$52.7_{1.0}$	$-16.7_{0.8}$	$62.1_{0.2}$	$58.1_{1.1}$	$-6.5_{0.3}$	
(220M)	- PEFT	<u>65.7</u>	<u>64.5</u>	0.0	<u>63.8</u>	<u>66.2</u>	0.0	
× ,	C3	$67.5_{0.3}$	$66.5_{0.2}$	$0.0_{0.0}$	$66.3_{0.2}$	$67.6_{0.2}$	$0.0_{0.0}$	
	Multi-Task	$76.3_{0.5}$	$76.2_{1.0}$	$3.2_{0.7}$	$70.0_{0.9}$	$71.1_{0.7}$	$1.7_{0.2}$	
T5-LARGE	PEFT	69.8	67.4	0.0	67.3	70.0	0.0	
(770M)	C3	$71.1_{0.3}$	$69.7_{0.5}$	$0.0_{0.0}$	$68.3_{0.5}$	$70.6_{0.4}$	$0.0_{0.0}$	

• Results till the Seen Tasks

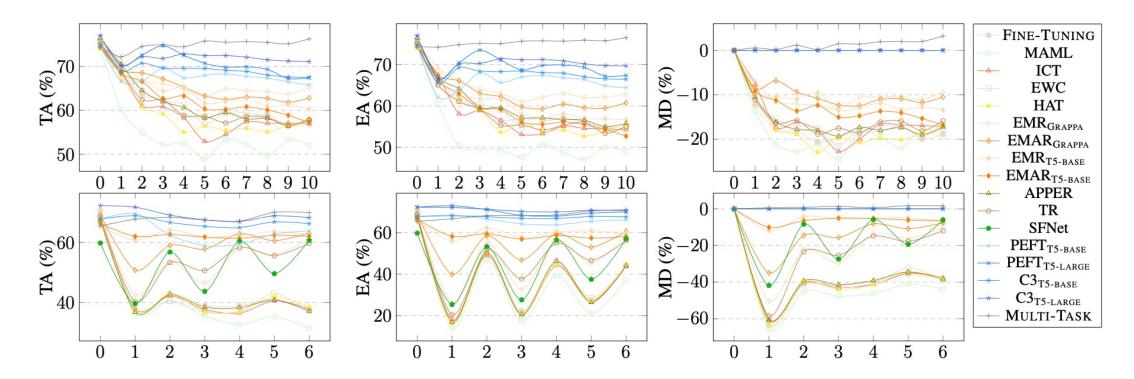


Figure 4: TA (%), EA (%), and MD (%) till the seen tasks of Spider-Stream (upper) and Combined-Stream (bottom) after learning on each task. Only the means are reported in 3 random task orders.

• Using LLM as the teacher

Student	TEACHER	Spider-	Stream	Combined-Stream			
STUDENT	TEACHER	TA (%) EA (%)		TA (%)	EA (%)		
T5-base	text-davinci-003	66.3	64.8	65.5	66.8		
	T5-LARGE	67.5 _{0.3}	66.5 _{0.2}	66.3_{0.2}	67.6 _{0.2}		
T5-LARGE	text-davinci-003	71.3	69.6	67.6	70.0		
	T5-LARGE	71.1 _{0.3}	69.7 _{0.5}	68.3_{0.5}	70.6_{0.4}		

Table 3: Performance of C3 using GPT as the TEACHER parser.

Thank You !

- Wang, B., Shin, R., Liu, X., Polozov, O., & Richardson, M. (2019). Rat-sql: Relation-aware schema encoding and linking for text-to-sql parsers. arXiv preprint arXiv:1911.04942.
- Lin, X. V., Socher, R., & Xiong, C. (2020). Bridging textual and tabular data for cross-domain text-to-sql semantic parsing. arXiv preprint arXiv:2012.12627.
- Cao, R., Chen, L., Chen, Z., Zhao, Y., Zhu, S., & Yu, K. (2021). LGESQL: line graph enhanced text-to-SQL model with mixed local and non-local relations. arXiv preprint arXiv:2106.01093.
- Yu, T., Wu, C. S., Lin, X. V., Wang, B., Tan, Y. C., Yang, X., ... & Xiong, C. (2021, January). GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing. In ICLR.
- Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J. G., Liu, T., & Zhang, D. (2019). Towards complex text-to-sql in cross-domain database with intermediate representation. arXiv preprint arXiv:1905.08205.

- Wang, X., Sun, H., Qi, Q., & Wang, J. (2020). SETNet: A Novel Semi-Supervised Approach for Semantic Parsing. In ECAI 2020 (pp. 2236-2243). IOS Press.
- Qi, Q., Wang, X., Sun, H., Wang, J., Liang, X., & Liao, J. (2020). A novel multi-task learning framework for semisupervised semantic parsing. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 2552-2560.
- Yin, P., Zhou, C., He, J., & Neubig, G. (2018). Structvae: Tree-structured latent variable models for semi-supervised semantic parsing. arXiv preprint arXiv:1806.07832.
- Cao, R., Zhu, S., Liu, C., Li, J., & Yu, K. (2019). Semantic parsing with dual learning. arXiv preprint arXiv:1907.05343.
- Ye, H., Li, W., & Wang, L. (2019). Jointly learning semantic parser and natural language generator via dual information maximization. arXiv preprint arXiv:1906.00575.
- Konstas, I., Iyer, S., Yatskar, M., Choi, Y., & Zettlemoyer, L. (2017). Neural amr: Sequence-to-sequence models for parsing and generation. arXiv preprint arXiv:1704.08381.
- Kate, R., & Mooney, R. (2007, April). Semi-supervised learning for semantic parsing using support vector machines. In Human Language Technologies 2007: the Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers (pp. 81-84).
- Corro, C., & Titov, I. (2018). Differentiable perturb-and-parse: Semi-supervised parsing with a structured variational autoencoder. arXiv preprint arXiv:1807.09875.
- Chen, Z., Chen, L., Li, H., Cao, R., Ma, D., Wu, M., & Yu, K. (2021). Decoupled dialogue modeling and semantic parsing for multi-turn text-to-SQL. arXiv preprint arXiv:2106.02282.

- Goldwasser, D., Reichart, R., Clarke, J., & Roth, D. (2011, June). Confidence driven unsupervised semantic parsing. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies(pp. 1486-1495).
- Lialin, V., Goel, R., Simanovsky, A., Rumshisky, A., & Shah, R. (2020). Update frequently, update fast: Retraining semantic parsing systems in a fraction of time. arXiv preprint arXiv:2010.07865.
- Li, Z., Qu, L., & Haffari, G. (2021). Total recall: a customized continual learning method for neural semantic parsers. arXiv preprint arXiv:2109.05186.
- Brahma, D., Verma, V. K., & Rai, P. (2021). Hypernetworks for Continual Semi-Supervised Learning. arXiv preprint arXiv:2110.01856.
- Luo, Y., Wong, Y., Kankanhalli, M., & Zhao, Q. (2022). Learning to Predict Gradients for Semi-Supervised Continual Learning. arXiv preprint arXiv:2201.09196.
- Smith, J., Balloch, J., Hsu, Y. C., & Kira, Z. (2021, July). Memory-efficient semi-supervised continual learning: The world is its own replay buffer. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
- Wang, L., Yang, K., Li, C., Hong, L., Li, Z., & Zhu, J. (2021). Ordisco: Effective and efficient usage of incremental unlabeled data for semi-supervised continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5383-5392).
- Baucum, M., Belotto, D., Jeannet, S., Savage, E., Mupparaju, P., & Morato, C. W. (2017, June). Semi-supervised deep continuous learning. In Proceedings of the 2017 International Conference on Deep Learning Technologies (pp. 11-18).

- Karim, N., Khalid, U., Esmaeili, A., & Rahnavard, N. (2022). CNLL: A Semi-supervised Approach For Continual Noisy Label Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3878-3888).
- Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., & Anandkumar, A. (2018, July). Born again neural networks. In International Conference on Machine Learning (pp. 1607-1616). PMLR.
- Zhang, Y., Xiang, T., Hospedales, T. M., & Lu, H. (2018). Deep mutual learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4320-4328).