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Background

* Relational databases store a vast amount of today’s information and provide the

foundation of applications.
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* Structured Query Language (SQL)
* Accessing relational databases

* Machine understandable, Quick and efficient
* Not user-friendly, requires deep understanding of the database and SQL syntax
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Background

* Text-to-SQL
* (Semantic Parsing) Transform Natural Language Question (NLQ) to SQL

e Input:  NLQ + database schema
* Qutput: an SQL query
Database Schema
Cars_data
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NLQ

For the cars with 4
cylinders,

which model has the
Largest horsepower?

SELECT T1.model

FROM car_names AS T1 JOIN cars_data AS T2
ON T1.make_id = T2.id

WHERE T2.cylinders = 4

ORDER BY T2.horsepower DESC LIMIT 1



Background

Different scenarios

 Single-Table Text-to-SQL (Zhong et al., 2017)

* Only one table
* No complex SQL syntax
e Solution: Encoder + multi-task

e Multi-Table Text-to-SQL (Yu et al., 2018)
* Multiple tables joined by foreign keys

e Complex SQL syntax, e.g., GROUP BY, nested query, ...

e Solution: Encoder-Decoder

* Conversational Text-to-SQL (Yu et al., 2019)
« Multiple tables joined by foreign keys

Multiple NLQs
In context

Solution: Encoder-Decoder + Context information

Complex SQL syntax, e.g., GROUP BY, nested query, ...

Question:

(How many CFL teams are from York College?]

SQL:
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York”

Domain Academic

SQL
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Return me the number of papers on PVLDB

SELECT COUNT (DISTINCT t2.title)
FROM Publication AS T2 JOIN Journal AS T1
ON T2.JID = T1.JID WHERE T1.name = “PVLDB”

: Database about shipping company containing 13 tables
: Find the names of the first 5 customers.

- What is the customer i1d of the most recent customer?

. SELECT customer_ id FROM customers ORDER BY

date became_customer DESC LIMIT 1

- What is their name?

: SELECT customer name FROM_ customers ORDER BY

date became customer DESC LIMIT 1

- How about for the first 5 customers?

. SELECT customer name FROM customers ORDER BY

date became_ customer LIMIT 5
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Challenge

A task stream 1s regarded as a sequence of fasks, each of which 1s a text-to-SQL task,
but for a database not previously seen.

Task 1 Task 2 Task 3 Task K

DB groups1 DB groupsZ2 DB groups3 DB groupsK

* Limited supervised data.
* High cost of SQL annotation = A small amount of supervised data

* Costly full volume retraining.
 Training models from scratch on all seen tasks = Too costly

* Catastrophic forgetting.
* Continually fine-tune models for each task = Performance drop on the previous task
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A base text-to-SQL parser

SemQL Grammar

Z ::=intersect RR |union R R | except RR | R

Following SOTA (Wang et al., 2019), (Lin et al., 2020), (Cao et al., 2021), s Seect | Select Filter | Select Order

| Select Superlative | Select Order Filter
| Select Superlative Filter

we construct a strong encoder-decoder model as the base parser Fg . setect:i=alaajaaajaaaaian--a

Order ::=asc A|desc A

* A strong table semantic parsing PLM, Grappa (Yu et al., 2021), as  Suerlative = most 4| least 4
Filter ::= and Filter Filter | or Filter Filter

the encoder; |>4|>AR |<A|<AR
|>A|>AR|=A|=AR

« An LSTM as the decoder; | # A1 #AR | between A

| like A | not like A|inAR |notinAR
A u=maxC T|minCT|countCT

* Grammar-based decoding using SemQL (Guo et al., 2019); |sum € Tl avg CT [none C T

C ::= column
T ::= table

Base Parser Fg

T l
Grappa Encoder — LSTM Decoder
v v
<S> q </S>t; ¢y <S>t ¢y <IS> ...ty € /5> Z =R R ::= Select Order book club
L |




eases over-fitting and improves

A Vanllla SOlutlon model generalizability.

* Rigidly combines CL and SSL provides an alternative cost-effective

training paradigm.
* SSL method: Self-training (ST) g paradig
* Most used in semantic parsing

* Good performance on few-shot text-to-SQL, (Guo et al., 2022)
* CL method: Episodic Memory Replay (EMR)

* Simple process, suitable for complex structured text-to-SQL models
* Best performance in CL methods for semantic parsing, (L1 et al., 2021)

Dl Di_l Di -Di+1
Al e A~ qi-1 Al Ut Aitl i+l

EMR Loss ST Loss
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Discussion

 Differences in learning goals
* SSL focuses on the optimal solution on a single task (current task).
* CL 1s more concerned with maintaining performance on previous tasks.

. :
Promotion of CL and SSL High quality pseudo-labeled samples
associated with D1, ..., D'™1

—

\

[ ——— —

N =

Additional samples related to task Dt

* Features of Text-to-SQL tasks
* SQL structures & schema instances
* Combinatorial generalization
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Discussion

Task 3
Sup. Unsup. Perpetrator

Prompt

—_————

Task 7
Sup.

=

of the
perpetrator with injuries.
name, location
perpetrator
injured 1
instance A

Show the race class and
number of races in each class.

*

instance C

—_———— ——

|r2)i—1 | Self-training
|

N =

Additional samples related to task D!

Race
Unsup.  ¢rgck
\\
and seating
for recently opened track?

name, location, seating
track

year_opened 1
instance B

* Although instances A and B are associated with different databases, the target SQL of A 1s

similar to that of B.

* The parser might learn from A on how to predict the pseudo-label of B.



High quality pseudo-labeled samples
associated with D1, ..., Dt 1

Discussion — —
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Task 1 Task 4 . . Task 8
G University = - Sscholar
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citedpaperid
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uonejuawsny
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Memory 1

N

Memory 4 Memory 3

* High-quality pseudo-labeled instances can also enrich the memory of past tasks.



Soft-fusion Network

* Teacher-Student architecture for the differences in learning goals of CL and SSL.
« TEACHER - SSL; STUDENT - CL;

* Dual sampling for the complementarity of CL and SSL.

» Teacher sampling and student sampling
» provides effective information supplement for TEACHER and STUDENT
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Results

Table 1: Experimental results for comparison with baselines.

e Overall Results

Spider WikiSQL
Method
ACC, ACC, BWT FWT ACC, ACC, BWT FWT
FINE-TUNE 475 455 -11.3 384 698 692 -15 630
SELF-TRAINING (Goldwasser et al. 2011) 483 466 -10.9 404 704 699 -33 635
SSL-only methods  gpTNer (wang et al. 2020b) 478 461 -146 416 707 702 2.1 618
MST-SQL (Guo et al. 2022) 496 473 66 407 707 701  -17 617
EWC (Kirkpatrick et al. 2016) 483 472 79 384 700 696 -20 614
HAT (Serra et al. 2018) 494 477 -84 393 700 696 -14 61.8
CL-only methods EMR (Wang et al. 2019) 501 491 32 403 711 707 22 63.1
EMAR (Han et al. 2020) 503 496 -46 404 708 705 -15 627
APPER (Mi et al. 2020) 50.7 49 77 400 702 699 < -3.0 627
TOTAL-RECALL (Li, Qu, and Haffari 2021) 534 516 -51 403 715 711 21 627
Our Solutions VANILLA 53.9 52.9 -4.0  40.6 72.2 71.9 -2.0 64.0
SFNET 560 536 -10 459 736 733 23 656
ORACLE (all tasks w/o Unsup.) 629 634 52 487 731 127 26 642

* VANILLA outperforms all the baselines in terms of ACC a and ACC_w;

* SFNET further improves its ACCa by 1.4% (WikiSQL) and 2.1% (Spider) and achieves
SOTA performance in almost all metrics on two datasets.
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Results

e Results till the Seen Tasks

ACCa, ACC., BWT, FWT till the seen tasks on Spider after learning on each task sequentially.
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 SFNET (blue) is always more stable than the other baselines in all metrics and this
stability becomes more pronounced as the number of tasks grows.

* Almost all methods in BWT improves slightly as the number of tasks increases.
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A base text-to-SQL parser

we utilize TS5 (Raffel et al., 2020) as the base parser Fy .
In particular, each input pair X = (Q, S) 1s flattened into a plain text,

! __ t1 Lt t1 . to o ty .
X' =ty:ct,cq' . e itaic? e, s |Q,
where c;" denotes the j-th column name of the i-th table, and ":", ",", and "|" are predefined separators.

PO|x’,0) = [T, P(5;1X’, 4<;, 0)
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A Vanilla Solution

* Parameter-efficient fine-tuning (PEFT) for

* Rigidly combines ICT and PEFT

* ICT method: In-context Tuning
* Convenient in semantic parsing
* Good performance on few-shot learning, (Min, et al., 2022)

* PEFT method: Prompt-Tuning
* Simple process, suitable for complex structured text-to-SQL models
* Best performance in CL methods for semantic parsing, (Zhu et al., 2022)

PEFT PLM PLM PLM
Prompt 1 3 Input Prompt2 Input Prompt3 Input
Vo | o | D EEREEE
Task 1 Task 2 Task 3

e S— S—
Flights Few-Shot Geography Few-Shot Few-Shot

Demol | Input Demo2 | Input Demo3 | Input

Z]
<

e
IcT PLM €Y JIVES) PLM ¢

catastrophic forgetting by saving soft prompts;

Overfitting

Catastrophic
Forgetting

012345678910
Task ID

* In-context tuning (ICT) for limited supervision;
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Context-Compressed Continual (C3) Parser

Teacher-student framework:

» TEACHER addresses the few-shot problem using ICT, which procures contextual information by
demonstrating a few training examples.

* STUDENT leverages the proposed PEFT framework to learn from the teacher's output distribution, and

subsequently compresses and saves the contextual information to the prompts, without storing any
training examples.

Taski — 1 Task i Taski + 1
eoee l l l [ XX ]
Demo [N Input Demo RN Input Demo L, Input
Teacher@)—j Teacher@) ] Teacher(‘)—l
Distribution Distribution Distribution

Student % ——() Dy, - Student —O Dy, _ 1Student ——O Dy,
Prowi_l : Input Prgptl Input Prowl+ Input
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Results

e Overall Results

Table 1: Experimental results for comparison with baselines in 3 random task orders. Means and
standard variations are reported. The absence of standard deviation for PEFT and C3 is due to the
fact that their performance is order-independent. ® indicates using the replayed memory of size 15
and * indicates using additional unsupervised data.

Spider-Stream

Combined-Stream

Backbone Method
TA (%) EA (%) MD (%) TA (%) EA (%) MD (%)
FINE-TUNING 56.91_0 54.61,0 —18.81,5 37.61,8 43.90,9 —39.155
MAML [8] 52.213 49.115 —19.555 31.313 37214 —43.815
ICT [13] 57.01.4 54.329 —17.157 37940 43.918 —37.444
GRAPPA
-LARGE EWC m] 57.53,3 55.12_4 —17.73,9 37.01.9 44.10_9 —38.42_2
(340M) HAT @] 57.82_9 54.83,4 —17.03,3 38.54.1 45.02,0 —37.65_5
EMR® [27] 65.202 62906 —9.405 60997 58615 —10.313
EMAR® [30] 62.8;5 608,52 —10.5;7 63.135 60.809 —T7.7T26
APPER [31] 57.916 55.817 —17.29¢ 37.124 44.006 —38.32.9
TR [11] 57912 55.114 —15.815 59.710 56.311 —11.9¢~
SENET* [7] - - - 60.709 57.009 —6.012
EMR* [27] 60.30.9 56.601 —13.4p2 62.604 60.0,4 —6.506
Tspase  MARSBO ST S2ho 107es G2loa S8l Gfs
(220M) (3 67505 66502 0.000  66.300 67.605  0.000
MULTI-TASK 76.30.5 76.21 ¢ 3.20.7 70.09.9 71.1p.7 1.70.0
TS5-LArRGE  PEFT 69.8 67.4 0.0 67.3 70.0 0.0
(770M) C3 71.103 69.705 0.00.0 68.305 70.60.4 0.00.0
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Results

e Results till the Seen Tasks

FINE-TUNING

N s 0 MAML
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Figure 4: TA (%), EA (%), and MD (%) till the seen tasks of Spider-Stream (upper) and Combined-
Stream (bottom) after learning on each task. Only the means are reported in 3 random task orders.
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Results

* Using LLM as the teacher

Table 3: Performance of C3 using GPT as the TEACHER parser.

Spider-Stream Combined-Stream

STUDENT TEACHER
TA (%) EA (%) TA (%) EA (%)
TS text-davinci-003 66.3 64.8 65.5 66.8
-BASE  T5_LARGE 67.503 66.502 66.302 67.602
text-davinci-003 71.3 69.6 67.6 70.0
T5-LARGE

TS5-LARGE 71.10_3 69.70_5 68.30_5 70.60_4

22



Thank You !
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