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Background
• Relational databases store a vast amount of today’s information and provide the 

foundation of applications.

medical	records	financial	marketscustomer	relations	
management

• Structured Query Language (SQL)
• Accessing relational databases 
• Machine understandable, Quick and efficient
• Not user-friendly, requires deep understanding of the database and SQL syntax

Natural	Language	Question

Text-to-SQL
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Background
• Text-to-SQL

• (Semantic Parsing)  Transform Natural Language Question (NLQ) to SQL
• Input:       NLQ + database schema
• Output:    an SQL query

NLQ
For the cars with 4 
cylinders, 
which model has the 
largest horsepower?

Desired SQL
SELECT T1.model
FROM car_names AS T1 JOIN cars_data AS T2 
ON T1.make_id = T2.id
WHERE T2.cylinders = 4
ORDER BY T2.horsepower DESC LIMIT 1

Database Schema

id mpg cylinders edispl horsepower weight accelerate year

Cars_data

make_id model make

Car_names

model_id maker model

Model_list

id maker full_name country

Car_makers
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Background
Different scenarios
• Single-Table Text-to-SQL (Zhong et al., 2017)

• Only one table
• No complex SQL syntax
• Solution: Encoder + multi-task

• Multi-Table Text-to-SQL (Yu et al., 2018)
• Multiple tables joined by foreign keys
• Complex SQL syntax, e.g., GROUP BY,  nested query, … 
• Solution: Encoder-Decoder

• Conversational Text-to-SQL (Yu et al., 2019)
• Multiple tables joined by foreign keys
• Complex SQL syntax, e.g., GROUP BY,  nested query, … 
• Multiple NLQs
• In context
• Solution: Encoder-Decoder + Context information

WikiSQL

Spider

SParC
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Background
Different scenarios
• Fixed data set (WikiSQL, Spider, Sparc,…)

• Unchanging data distribution
• Inability to adapt or expand the behavior over 

time
• Uncommon in real-world scenarios

• Data stream (What we care about)
• Changing data distribution
• Require adapting or expanding the behavior over 

time
• Common in real-world scenarios
• Ideal Intelligence

medical	records	

financial	markets

customer	relations	management

• New product categories
• Target customer change…

• Business expansion
• New Stock Issuance
• Policy Adjustment…

• New Diseases (Covid 19)
• Section upgrade…

smart	speakers

• New actions, skills, …
• Import knowledge

…Cross-domain

In-domain

In-domain

In-domain
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Challenge

• Limited supervised data. 
• High cost of SQL annotation à A small amount of supervised data

• Costly full volume retraining.
• Training models from scratch on all seen tasks à Too costly

• Catastrophic forgetting.
• Continually fine-tune models for each task à Performance drop on the previous task 

A task stream is regarded as a sequence of tasks, each of which is a text-to-SQL task, 
but for a database not previously seen.

…
Task 1 Task 2 Task 3 Task K

DB groups1 DB groups2 DB groups3 DB groupsK
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A base text-to-SQL parser
Following SOTA (Wang et al., 2019), (Lin et al., 2020), (Cao et al., 2021), 

we construct a strong encoder-decoder model as the base parser ℱ! .
• A strong table semantic parsing PLM, Grappa (Yu et al., 2021), as 

the encoder;
• An LSTM as the decoder;
• Grammar-based decoding using SemQL (Guo et al., 2019);

SemQL Grammar 

Grappa Encoder LSTM Decoder

<s>  ! </s> "! #! </s> "! #" </s> … " # # $ </s>  

…

! ∷= # # ∷= $%&%'( )*+%* book club

Base Parser ℱ!
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A Vanilla Solution 
• Rigidly combines CL and SSL 
• SSL method: Self-training (ST)

• Most used in semantic parsing
• Good performance on few-shot text-to-SQL, (Guo et al., 2022)

• CL method: Episodic Memory Replay (EMR)
• Simple process, suitable for complex structured text-to-SQL models
• Best performance in CL methods for semantic parsing, (Li et al., 2021)
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• Semi-Supervised Learning (SSL) eases over-fitting and improves 
model generalizability.

• Continual Learning (CL) provides an alternative cost-effective 
training paradigm.



Discussion
• Differences in learning goals

• SSL focuses on the optimal solution on a single task (current task).
• CL is more concerned with maintaining performance on previous tasks.

• Promotion of CL and SSL

𝒟!"#𝒟# … Self-training

Additional samples related to task 𝒟!

High quality pseudo-labeled samples 
associated with 𝒟", … ,	𝒟!#"

SSLCL

• Features of Text-to-SQL tasks
• SQL structures & schema instances
• Combinatorial generalization

𝒟!

10



Discussion
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Sup. Unsup.
Task 3

What is the name, location of the 
perpetrator with the most injuries.

SELECT name, location 
FROM perpetrator 
ORDER BY injured DESC LIMIT 1

Perpetrator
……

Show the race class and 
number of races in each class.

SELECT CLASS ,  COUNT(*)
FROM race 
GROUP BY CLASS

What is the name, location and seating 
for the most recently opened track?

SELECT name ,  location ,  seating
FROM track 
ORDER BY year_opened DESC LIMIT 1

Sup. Unsup.
Task 7 Race

track

Semi-supervised Learning

Prompt

instance A instance C instance B

!!"#!# … Self-training

Additional samples related to task 	"!

SSLCL

• Although instances A and B are associated with different databases, the target SQL of A is 
similar to that of B. 

• The parser might learn from A on how to predict the pseudo-label of B. 



Discussion
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• High-quality pseudo-labeled instances can also enrich the memory of past tasks. 

Memory 1 Memory 4

Sup. Unsup.
Task 1

Geo Sup. Unsup.
Task 4 University

basketball Sup. Unsup.
Task 8

Scholar
…

state_name
area
population

city_name
density
border

GROUP BY
COUNT
Subquery

…
…

…
founded
school
enrollment

JOIN
GROUP BY

team_name
affiliation
acc_percent

ORDER BY
LIKE
MIN

…
…

…

Augm
entation

Augm
entation

…

… …

Continual Learning

ORDER BY
MAX

keyphraseid
paperid

HAVING
LIKE

venueid
year
citedpaperid

COUNT 
DESC
EXCEPT

…
…

…

Augm
entation

…

Memory 8

…

…

!!"#!# … Self-training

High quality pseudo-labeled samples 
associated with 	"!, … ,	""#!

SSLCL



Soft-fusion Network 
• Teacher-Student architecture for the differences in learning goals of CL and SSL.

• TEACHER à SSL;   STUDENT à CL;

• Dual sampling for the complementarity of CL and SSL.
• Teacher sampling and student sampling
• provides effective information supplement for TEACHER and STUDENT
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Results
• Overall Results 

SSL-only methods

CL-only methods

Our Solutions

• VANILLA outperforms all the baselines in terms of ACC_a and ACC_w;
• SFNET further improves its ACCa by 1.4% (WikiSQL) and 2.1% (Spider) and achieves 

SOTA performance in almost all metrics on two datasets. 
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Results
• Results till the Seen Tasks 

• SFNET (blue) is always more stable than the other baselines in all metrics and this 
stability becomes more pronounced as the number of tasks grows. 

• Almost all methods in BWT improves slightly as the number of tasks increases. 

ACCa, ACCw, BWT, FWT till the seen tasks on Spider after learning on each task sequentially. 
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Parameterizing Context: Unleashing the Power of 
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A base text-to-SQL parser

we utilize T5 (Raffel et al., 2020) as the base parser ℱ! .
In particular, each input pair X = (Q, S) is flattened into a plain text,
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A Vanilla Solution 
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Task 1

Flights
…

Task 2

Geography

Task 3

Movies

PLM PLM PLM
InputPrompt 1 Prompt 2 Prompt 3Input Input

Few-Shot Few-Shot Few-Shot

Overfitting

PLM

Demo 1 Input

PLM

Demo 2 Input

PLM

Demo 3 Input Catastrophic 
Forgetting

PEFT

ICT

• In-context tuning (ICT) for limited supervision；
• Parameter-efficient fine-tuning (PEFT) for 

catastrophic forgetting by saving soft prompts；• Rigidly combines ICT and PEFT
• ICT method: In-context Tuning

• Convenient in semantic parsing
• Good performance on few-shot learning, (Min, et al., 2022)

• PEFT method: Prompt-Tuning
• Simple process, suitable for complex structured text-to-SQL models
• Best performance in CL methods for semantic parsing, (Zhu et al., 2022)



Context-Compressed Continual (C3) Parser 
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Task ! − #
…

Task ! Task ! + #

Teacher

Demo Input Demo Input Demo Input

Teacher Teacher

Student Student Student
Distribution

InputPrompt 	& − 1

Distribution Distribution

InputPrompt & InputPrompt & + 1
(!" (!" (!"

…

Teacher-student framework：
• TEACHER addresses the few-shot problem using ICT, which procures contextual information by 

demonstrating a few training examples.
• STUDENT leverages the proposed PEFT framework to learn from the teacher's output distribution, and 

subsequently compresses and saves the contextual information to the prompts, without storing any 
training examples.



Results
• Overall Results 
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Results
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• Results till the Seen Tasks 



Results
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• Using LLM as the teacher



Thank You !
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