

Collaborative Solutions for Complex Task Reasoning Using Large Models and Knowledge Graphs

Yongrui Chen

Institute of Cognitive Science Southeast University

Contents

- 1. Introduction of KG and LLM
- 2. KG for LLM
- 3. LLM for KG
- 4. Integration of LLM and KG
- 5. Conclusion & Future Work

What is Knowledge?

The information, understanding, and skills that you gain through education or experience.

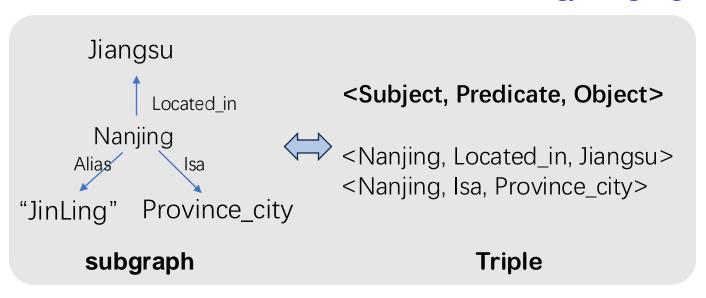
—— Oxford Dictionary

- The ability to learn and apply knowledge is the fundamental ability to determine whether artificial intelligence has human intelligence
- The following can be considered as knowledge
 - Fact knowledge: China is a country
 - Description of information: text or image
 - Skills obtained by practice: skill to open a bottle
- **Knowledge Base (KB):** a collection of knowledge, including documents, images, triples, rules or parameters of neural networks, etc.

Knowledge Graph

A knowledge graph (KG) is a data structure for representing knowledge using a graph

- Nodes in the graph can be either entities or literals
- Edges are relations between entities and entities or literals
- Semantics of KG is based on ontology languages such as RDFS¹ or OWL²



Knowledge Graph

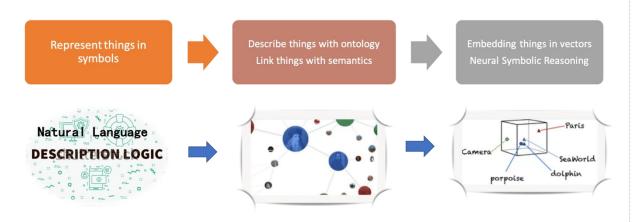
famous KGs

L. https://www.w3.org/TR/rdf-schema/

2. https://www.w3.org/OWL/

KG as Knowledge Base

KG as a World Model

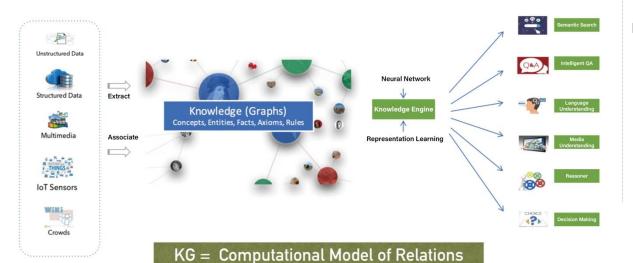


The Semantic Web & Linked Knowledge

The Knowledge Graph

Graph Structure as Knowledge Base

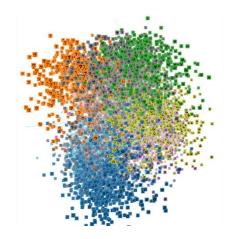
The Good Old Fashioned Al



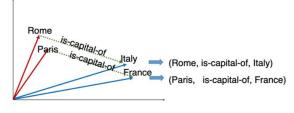
Text to Knowledge Graph

KG Embeddings as Knowledge Base

Embeddings: Distributed Vector Representation



- · Text: Learn a vector of each word in a sentence
- KG: Learn a vector for each entity or property
- Image/Video : Learn a vector for each visual object



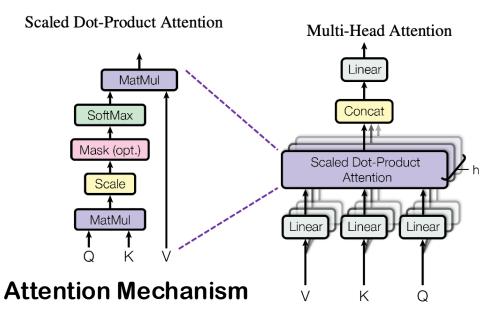
Rome - Italy Paris - France

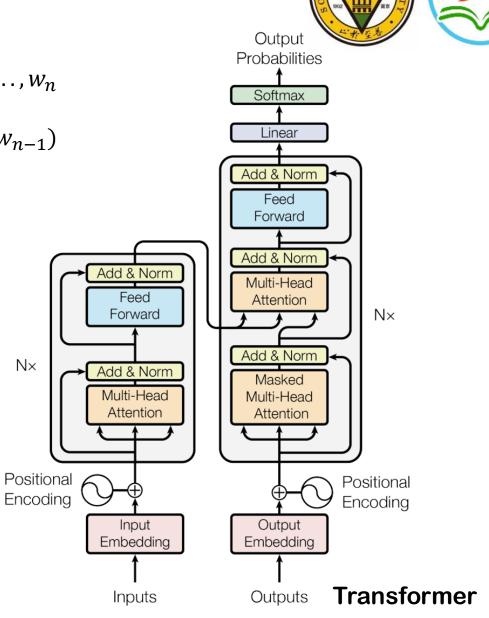
What is Language Model?

Calculate the probability of a word sequence: $w_1, w_2, ..., w_n$

$$P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2|w_1) \times ... \times P(w_n|w_1, ..., w_{n-1})$$

- Transformer, a most popular neural network;
- Encoder Decoder architecture;
- Attention Mechanism;





6

Pre-training & Large Language Model

Pre-training

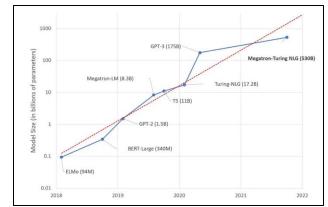
Train the model (Transformer) on a generic large-scale dataset to learn some fundamental, common features or patterns.

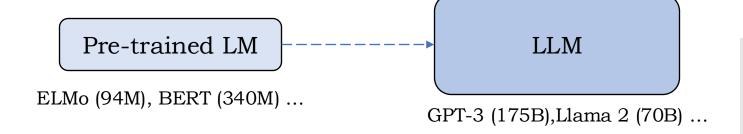
Casual Language Model

Predict the n-th word using the previous n-1 words.

Large Language Model (LLM)

As the number of parameters gradually increases, when it reaches a certain scale (typically over one billion), it is referred to as an LLM.

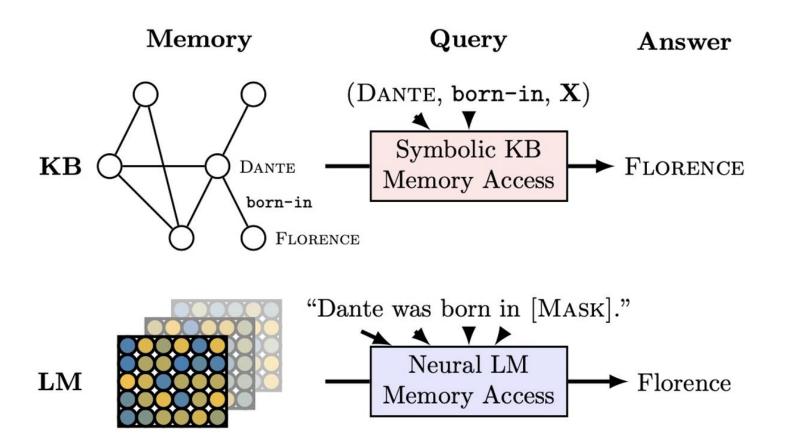




As the scale of model increases, the performance of the model significantly improves!

LLM as Knowledge Base

• An LLM is a parametric knowledge base



KG vs LLM: Reasoning Capability Comparison

LLM Reasoning

- Code Pre-training: enhance LLM reasoning during training
- Prompt Engineering: eliciting LLM reasoning during inference

KG Reasoning

- Graph computing
- Rule-based reasoning
- Ontology reasoning
- Spatial-temporal reasoning
- KG embedding/GNN

LLM Reasoning

- zero-shot prompting
- Few-shot prompting
- CoT prompting
- Instruction

KG Reasoning

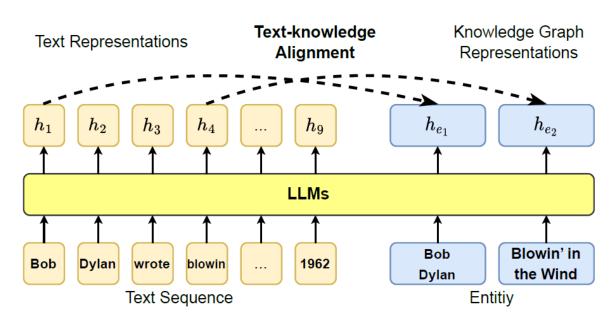
- Graph computing
- Rule-based reasoning
- Ontology reasoning
- Spatial-temporal reasoning
- KG embedding/GNN

Contents

- 1. Introduction of KG and LLM
- 2. KG for LLM
- 3. LLM for KG
- 4. Integration of LLM and KG
- 5. Conclusion & Future Work

KG for LLM: Pre-training

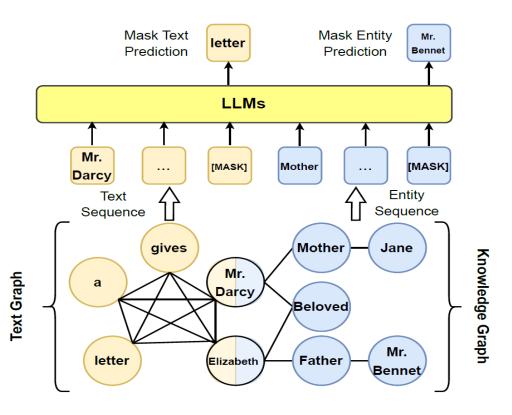
- Designing pre-training objective to incorporate KG components
- Integrate KG with text as LLM training input



Input Text: Bob Dylan wrote Blowin' in the Wind in 1962

Aligned Pre-training Object (ERNIE ...)

ERNIE: Enhanced language representation with informative entities, ACL 2019. CoLAKE: Contextualized language and knowledge embedding, 2020.

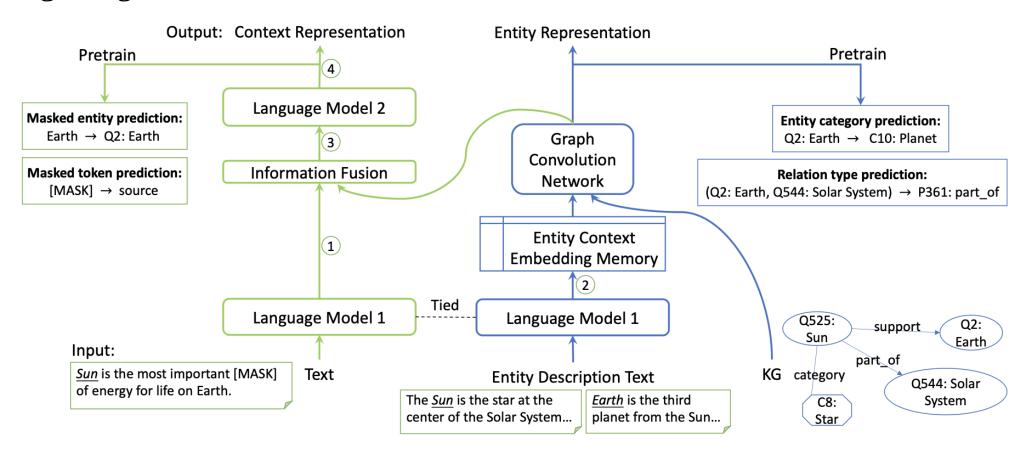


Input Text: Mr. Darcy gives Elizabeth a letter

Combined Training Input (CoLake...)

KG for LLM: Pre-training

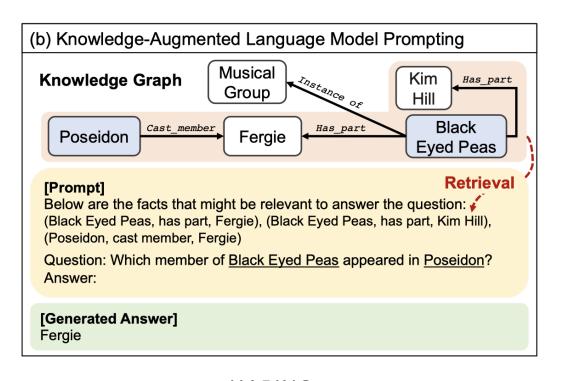
Integrating KGs into additional fusion modules

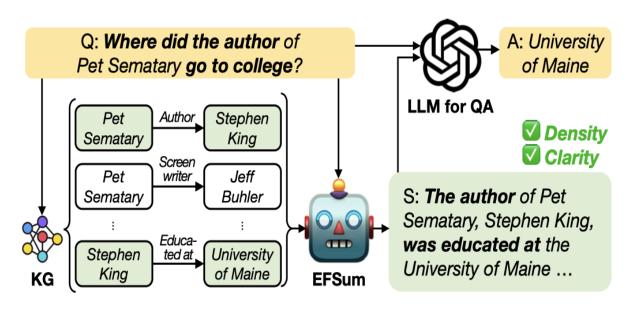


Fused module (JAKET ...)

KG for LLM: KG as Prompt

Knowledge graphs are directly utilized by LLMs as prompts without training





KAPING

EFSum

Retrieve subgraph triples as prompt

Summarize the related triples

KG for LLM: KG as Prompt

• Experimental results of KAPING

Table 1: Main results of language model prompting, where we report the generation accuracy. The number inside the parentheses in the first row denotes the parameter size of language models, and best scores are emphasized in bold.

Datasets	Methods	T5 (0.8B)	T5 (3B)	T5 (11B)	OPT (2.7B)	OPT (6.7B)	OPT (13B)	T0 (3B)	T0 (11B)	GPT-3 (6.7B)	GPT-3 (175B)	AlexaTM (20B)	Average
	No Knowledge	6.95	13.40	9.48	19.85	29.77	28.38	21.43	40.77	44.63	63.59	46.79	29.55
	Random Knowledge	21.55	19.15	17.57	28.07	31.73	33.31	32.62	51.20	51.01	65.87	57.37	37.22
WebQSP	Popular Knowledge	15.30	16.88	18.39	28.32	28.13	24.21	27.05	47.22	45.58	62.26	54.91	33.48
w/ Freebas	e Generated Knowledge	6.19	7.84	6.76	7.46	11.50	8.22	19.41	38.81	45.89	62.14	35.13	22.67
	KAPING (Ours)	34.70	25.41	24.91	41.09	43.93	40.20	52.28	62.85	60.37	73.89	67.67	47.94
	No Knowledge	10.30	18.42	15.21	23.94	33.77	32.40	24.56	44.20	48.50	67.60	42.41	32.85
	Random Knowledge	17.94	22.78	24.28	37.24	35.61	38.27	28.85	47.68	52.05	60.64	55.63	38.27
WebQSP	Popular Knowledge	15.35	20.80	20.74	30.83	30.01	27.83	24.83	48.02	47.41	63.37	53.92	34.83
w/ Wikidat	Generated Knowledge	11.94	13.30	12.28	11.26	17.53	14.19	22.92	41.34	48.77	65.89	31.16	26.42
	KAPING (Ours)	23.67	40.38	35.47	49.52	53.34	51.57	49.86	58.73	60.44	69.58	65.04	50.69
	No Knowledge	11.23	14.25	17.06	19.76	27.19	26.83	14.75	23.74	34.65	56.33	41.97	26.16
	Random Knowledge	17.59	18.19	18.83	28.11	26.58	28.36	16.10	26.15	32.98	51.56	46.02	28.22
Mintaka	Popular Knowledge	17.56	18.09	18.73	26.97	27.08	23.10	16.74	27.15	32.48	53.16	46.41	27.95
w/ Wikidata	Generated Knowledge	13.61	14.61	14.29	11.87	14.96	16.24	14.46	23.13	33.12	55.65	34.58	22.41
	KAPING (Ours)	19.72	22.00	22.85	32.94	32.37	33.37	20.68	29.50	35.61	56.86	49.08	32.27

KG for LLM: KG as Prompt

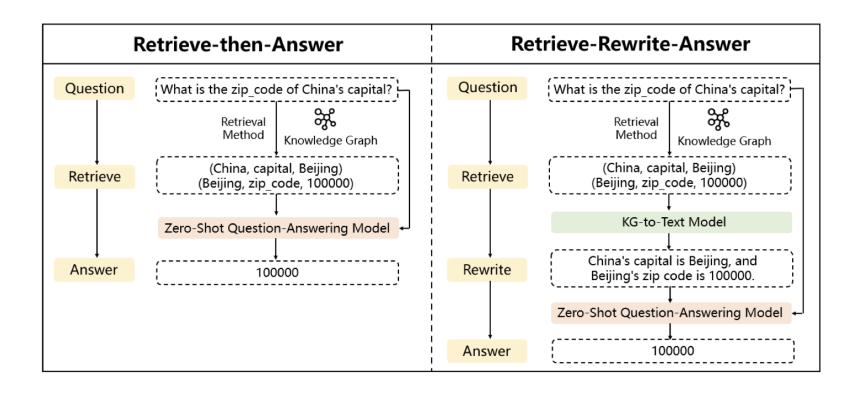
• Experimental results of EFSUM

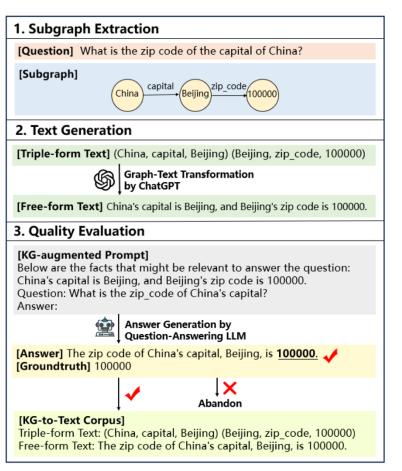
Datasats	Mothoda	GP	T-3.5-tu	rbo	Flan-T5-XL			Llama2-7B-Chat		
Datasets	Methods	Random	Popular	MPNet	Random	Popular	MPNet	Random	Popular	MPNet
	No knowledge	0.506	0.506	0.506	0.409	0.409	0.409	0.539	0.539	0.539
	KAPING (Baek et al., 2023a)	0.441	0.437	0.538	0.297	0.329	0.439	0.476	0.490	0.519
W LOCD	KG2Text (Ribeiro et al., 2021)	0.469	0.468	0.476	0.317	0.276	0.321	0.465	0.451	0.481
WebQSP	Rewrite (Wu et al., 2023)	0.473	0.445	0.525	0.323	0.348	0.431	0.458	0.439	<u>0.511</u>
	EFSUM _{prompt} (Ours)	0.542	0.534	0.538	0.443	0.442	0.468	0.477	0.472	0.491
	EFSUM _{distill} (Ours)	<u>0.475</u>	0.539	0.569	0.500	0.505	0.500	0.457	<u>0.488</u>	0.497
	No knowledge	0.540	0.540	0.540	0.228	0.228	0.228	0.440	0.440	0.440
	KAPING (Baek et al., 2023a)	0.553	0.516	0.539	0.201	0.198	0.279	0.417	0.398	0.407
3.51 . 1	KG2Text (Ribeiro et al., 2021)	0.505	0.500	0.492	0.220	0.235	0.234	0.421	0.389	0.378
Mintaka	Rewrite (Wu et al., 2023)	0.527	0.524	0.515	0.230	0.224	0.288	0.393	0.374	0.386
	EFSUM _{prompt} (Ours)	0.454	0.492	0.496	0.213	0.215	0.321	0.390	0.392	0.418
	EFSUM _{distill} (Ours)	0.427	0.425	0.474	0.292	0.243	0.338	0.397	0.393	0.406

Table 2: QA accuracy of the LLMs based on various fact verbalization, with different fact retrieval strategies (i.e., random facts, popular facts, and question-relevant facts). We limit the maximum token length of contextual knowledge to L=400. The best and second-best results are in **bold** and <u>underlined</u>, respectively.

KG for LLM: KG-to-text Prompt

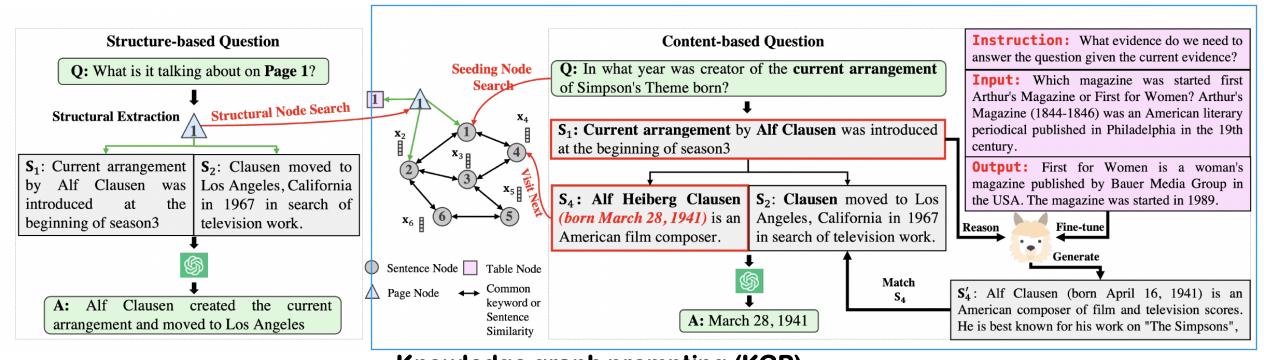
• Transform KG knowledge into well-textualized statements most informative





KG for LLM: Enhanced LLM Reasoning

• Knowledge graph prompting for LLM reasoning on multi-documents



Knowledge graph prompting (KGP)

For questions on document content, concatenate it with the currently retrieved context and prompt the LLM to generate the next evidence to answer the question.

KG for LLM: Enhanced LLM Reasoning

Experimental results of KGP

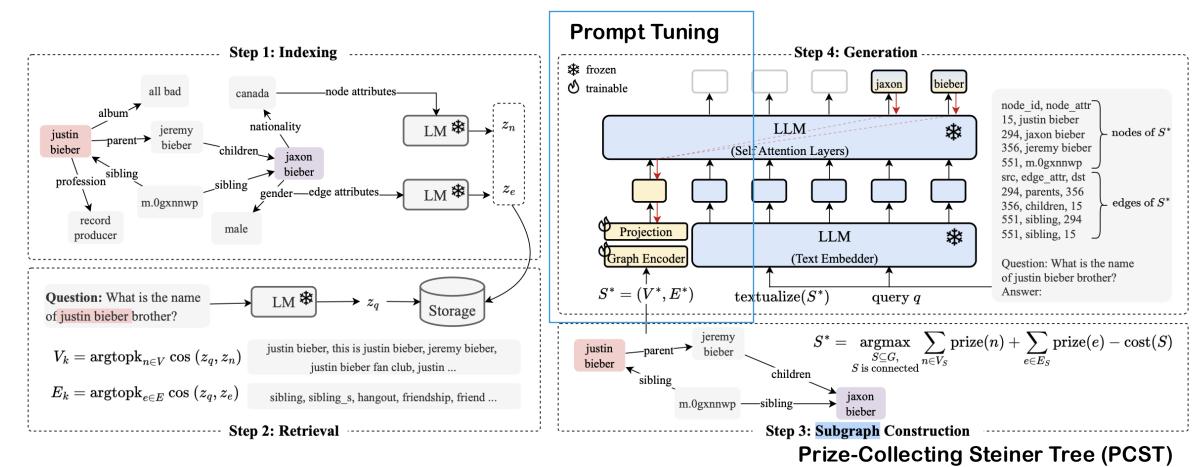
Method	HotpotQA		IIRC		2 V	2WikiMQA			IuSiQ u	e	PDF-T	Rank			
Memou	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Struct-EM	w PDF-T	w/o PDF-T
None	41.80	19.00	30.50	19.50	8.60	13.17	44.40	18.60	25.07	30.40	4.60	10.58	0.00	8.53	9.00
KNN	71.57	40.73	57.97	43.82	25.15	37.24	52.40	31.20	42.13	44.70	18.86	30.04	_	7.00	7.33
TF-IDF	76.64	<u>45.97</u>	64.64	47.47	27.22	40.80	58.40	34.60	44.50	44.40	21.59	32.50	_	4.85	5.00
BM25	71.95	41.46	59.73	41.93	23.48	35.55	55.80	30.80	40.55	44.47	21.11	31.15	_	6.92	7.25
DPR	73.43	43.61	62.11	48.11	26.89	41.85	62.40	35.60	51.10	44.27	20.32	31.64	_	5.31	5.50
MDR	75.30	45.55	<u>65.16</u>	50.84	<u>27.52</u>	43.47	63.00	36.00	<u>52.44</u>	48.39	23.49	<u>37.03</u>	_	3.07	3.08
IRCoT	74.36	45.29	64.12	49.78	27.73	41.65	61.81	37.75	50.17	45.14	22.46	34.21	_	4.00	4.08
KGP-T5	<u>76.53</u>	46.51	66.77	48.28	26.94	41.54	63.50	39.80	53.50	50.92	27.90	41.19	67.00	2.69	2.75
Golden	82.19	50.20	71.06	62.68	35.64	54.76	72.60	40.20	59.69	57.00	30.60	47.75	100.00	1.00	1.00

Table 1: MD-QA Performance (%) of different baselines. The best and runner-up are in bold and underlined. None: no passages but only the question is provided. Golden: supporting facts are provided along with the question. PDF-T stands for PDFTriage.

Knowledge graph prompting (KGP)

KG for LLM: Enhanced RAG

KG can help LLMs reduce hallucinations with Retrieval Augment Generation (RAG).

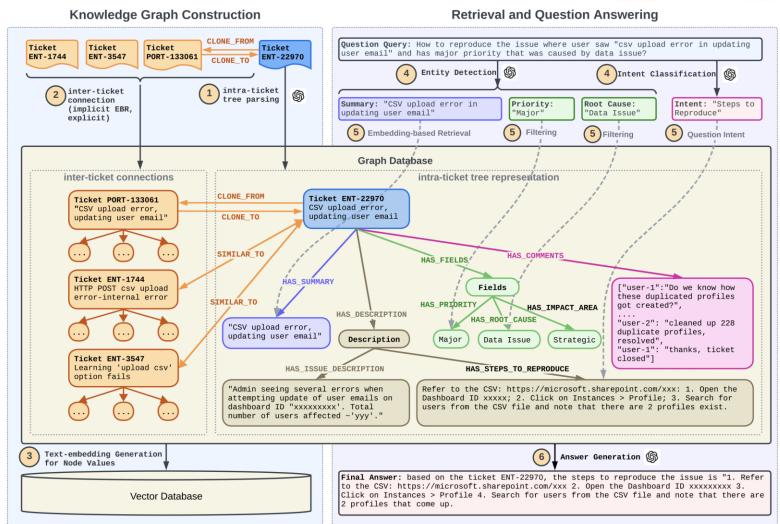


G-retriever

G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering. Preprint 2024.

KG for LLM: Enhanced RAG

- RAG on KG is more likely to capture intra-question structure and interquestion relationships
- a) Build an KG from historical records.
- b) Parsing consumer queries to identify named entities and intents. then navigates within the KG to identify related sub-graphs for generating answers

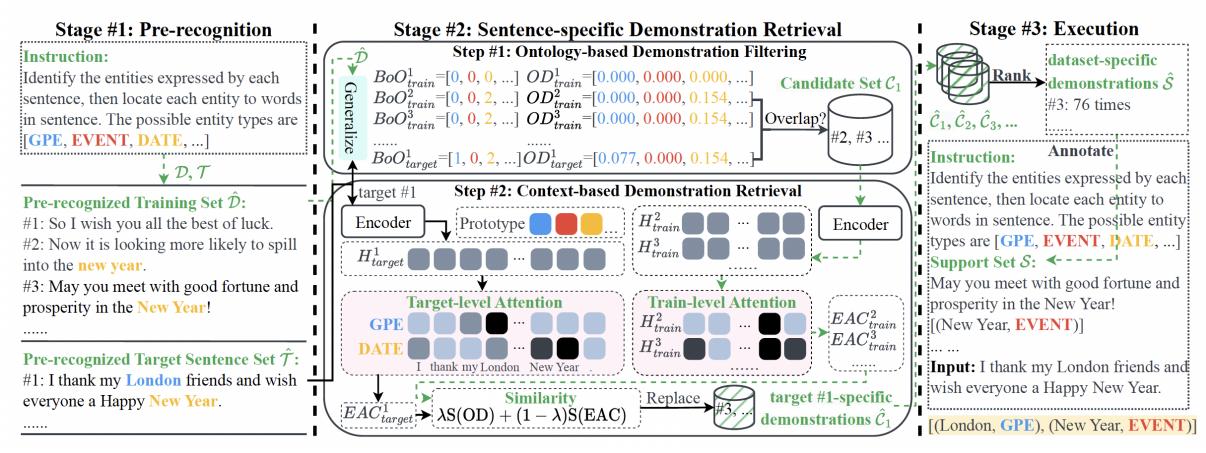


KG for LLM: Enhanced ICL

• KG can help retrieve high-correlated demonstrations during inference for In-Context

Learning (ICL).

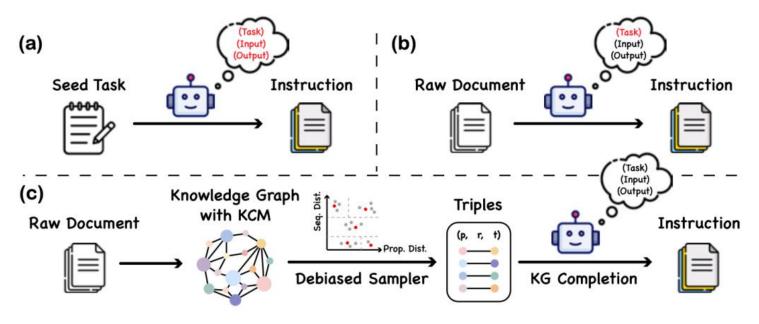
ConsistNER



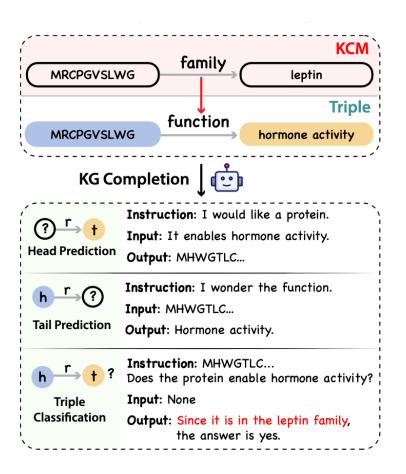
KG for LLM: Instruction Construction

KG can guide the construction of instruction datasets.

Knowledge to Instruction

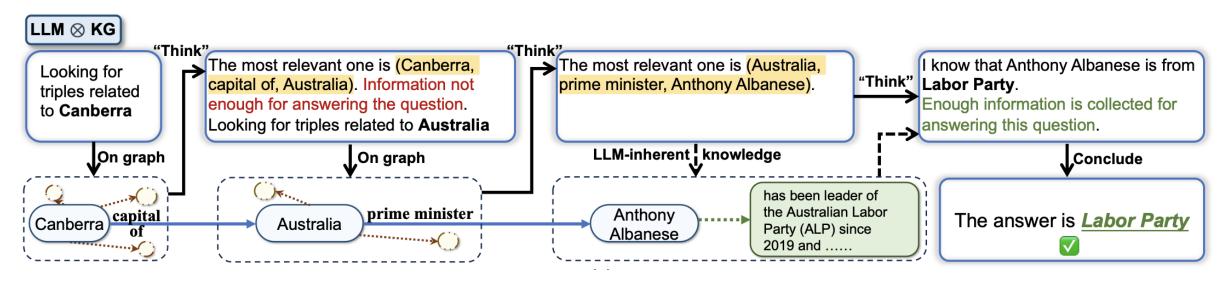


Using an LLM cooperated with KG completion tasks, to generate factual, logical, and diverse instructions.



KG for LLM: Knowledge Fusion

• LLM provides internal knowledge through its parameters, while the KG provides external knowledge.



Think-on-Graph (ToG)

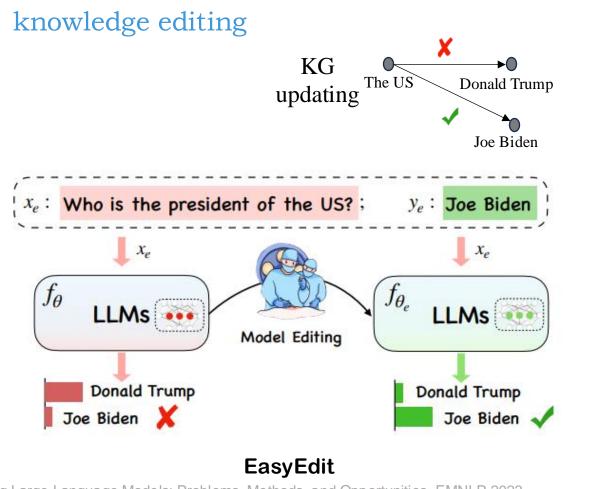
KG for LLM: Knowledge Fusion

• Experimental results of TOG

Method	Multi-Hop KBQA				Single-Hop KBQA	Open-Domain QA	S	ot Filling	Fact Checking
Tributiou .	CWQ	WebQSP	GrailQA	QALD10-en	Simple Questions	WebQuestions	T-REx	Zero-Shot RE	Creak
				Without	external knowledge				
IO prompt w/ChatGPT	37.6	63.3	29.4	42.0	20.0	48.7	33.6	27.7	89.7
CoT w/ChatGPT	38.8	62.2	28.1	42.9	20.3	48.5	32.0	28.8	90.1
SC w/ChatGPT	45.4	61.1	29.6	45.3	18.9	50.3	41.8	45.4	90.8
				With ex	ternal knowledge				
Prior FT SOTA	70.4^{α}	82.1^{β}	75.4^{γ}	45.4^{δ}	85.8^{ϵ}	56.3 [¢]	87.7^{η}	74.6^{θ}	88.2^{ι}
Prior Prompting SOTA	-	74.4^{κ}	53.2^{κ}	-	-	-	-	-	-
ToG-R (Ours) w/ChatGPT	58.9	75.8	56.4	48.6	45.4	53.2	75.3	86.5	93.8
ToG (Ours) w/ChatGPT	57.1	76.2	68.7	50.2	53.6	54.5	76.8	88.0	91.2
ToG-R (Ours) w/GPT-4	69.5	81.9	80.3	54.7	58.6	57.1	75.5	86.9	95.4
ToG (Ours) w/GPT-4	67.6	82.6	81.4	53.8	66.7	57.9	77.1	88.3	95.6

KG for LLM: Knowledge Editing

• Extracting updating knowledge from KG as In-Context Learning examples for



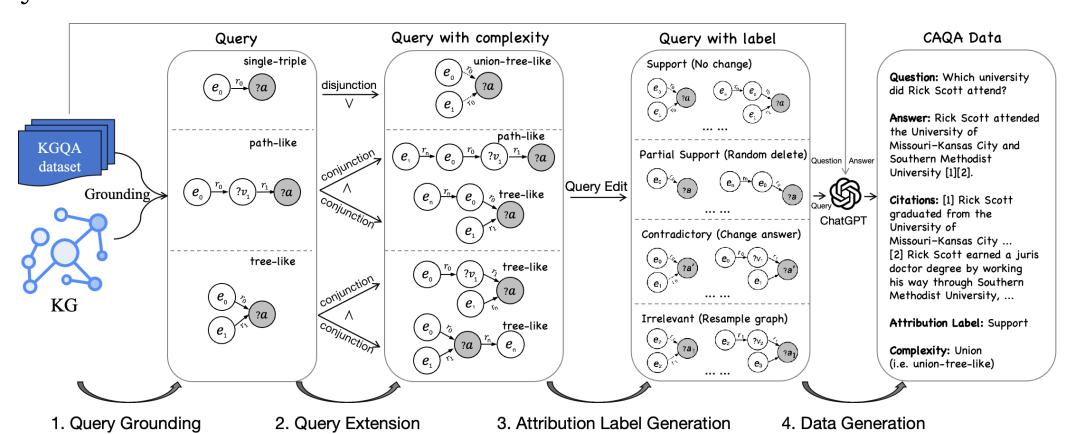
Model Input Context C = k demonstrations: $\{c_1, \dots c_k\}$ Example for Copying C₁ New Fact: The president of US is Obama, Biden. Q: The president of US is? A: Biden. Example for Updating c₂ New Fact: Einstein specialized in physics.math Q: Which subject did Einstein study? A: math. Example for Retaining C₃ New Fact: Messi plays soccer-tennis. Q: Who produced Google? A: Larry Page. New fact: Paris is the capital of France. Japan. x: Q: Which city is the capital of Japan? A: Model Output

In-Context Knowledge Editing (IKE)

y: Paris.

KG for LLM: Knowledge Validation

• Evaluating the attribution: verifying whether the generated answer is fully supported by the citation.



CAQA benchmark

KG for LLM: Knowledge Validation

• Experimental results on CAQA dataset.

Evaluators (Size)			CAQA		
Dyuluutolis (Size)	Sup.	Ins.	Con.	Irr.	Overall
LLaMA-2 (7B)	0.423	0.121	0.057	0.170	0.279
LLaMA-2-chat (7B)	0.462	0.158	0.058	0.053	0.183
Mistral (7B)	0.456	0.178	0.191	0.153	0.305
Mistral-Instruct (7B)	0.591	0.189	0.159	0.016	0.324
Vicuna (7B)	0.437	0.007	0.001	0.000	0.111
LLaMA-2 (13B)	0.418	0.164	0.161	0.125	0.279
LLaMA-2-chat (13B)	0.469	0.171	0.173	0.103	0.224
Vicuna (13B)	0.485	0.049	0.000	0.000	0.143
GPT-3.5-turbo	0.592	0.150	0.616	0.497	0.506
GPT-4	0.829	0.430	0.776	0.628	0.687
AUTOIS (11B)	0.609	-	-	-	0.152
ATTRSCORE (13B)	0.667	-	0.611	-	0.320
LLaMA-2 (7B)	0.922	0.897	0.944	0.933	0.926
LLaMA-2-chat (7B)	0.925	0.903	0.943	0.927	0.930
Mistral (7B)	0.927	0.908	0.944	0.849	0.882
Vicuna (7B)	0.937	0.907	0.940	0.906	0.932
LLaMA-2 (13B)	0.929	0.907	0.938	0.923	0.925
Vicuna (13B)	0.942	0.923	0.939	0.923	0.933

Table 5: The performance of the different attribution evaluators on our CAQA benchmark. Evaluators of the first (resp. second) part follow the zero-shot (resp. fine-tuning) setting.

Evaluators (Size)		CAQA								
	S.	C.	I.	U.						
LLaMA-2 (7B)	0.286	0.249	0.282	0.260						
LLaMA-2-chat (7B)	0.281	0.235	0.291	0.290						
Mistral (7B)	0.315	0.281	0.294	0.265						
Mistral-Instruct (7B)	0.339	0.278	0.300	0.271						
Vicuna (7B)	0.341	0.268	0.290	0.285						
LLaMA-2 (13B)	0.314	0.270	0.303	0.253						
LLaMA-2-chat (13B)	0.338	0.279	0.305	0.278						
Vicuna (13B)	0.339	0.257	0.296	0.288						
GPT-3.5	0.551	0.323	0.346	0.525						
GPT-4	0.743	0.416	0.501	0.787						
AUTOIS (11B)	0.403	0.171	0.272	0.281						
ATTRSCORE (13B)	0.473	0.333	0.308	0.303						
LLaMA-2 (7B)	0.923	0.815	0.931	0.921						
LLaMA-2-chat (7B)	0.935	0.820	0.930	0.924						
Mistral (7B)	0.935	0.831	0.921	0.905						
Vicuna (7B)	0.956	0.823	0.936	0.939						
LLaMA-2 (13B)	0.954	0.824	0.936	0.939						
Vicuna (13B)	0.950	0.847	0.935	0.940						

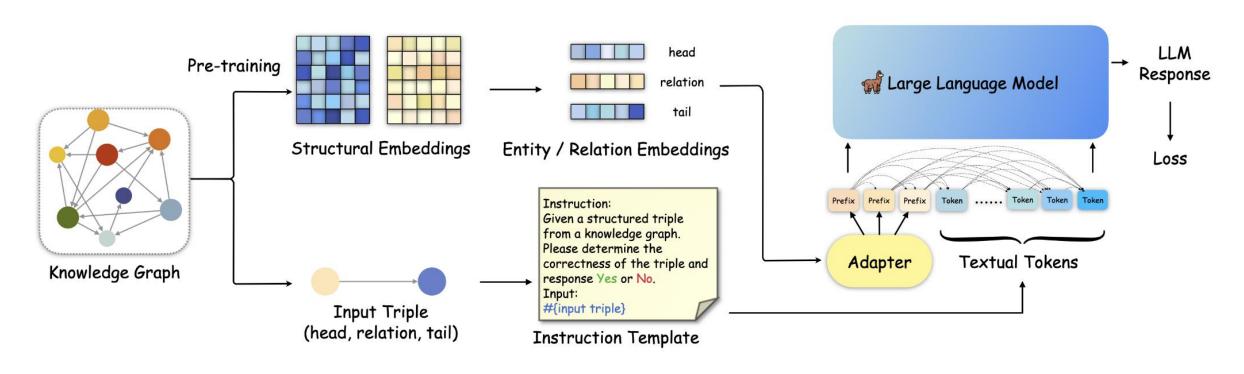
Table 6: Performance of all evaluators on various level of attribution complexity. Evaluators of the first (resp. second) part follow the zero-shot (resp. fine-tuning) setting.

Contents

- 1. Introduction of KG and LLM
- 2. KG for LLM
- 3. LLM for KG
- 4. Integration of LLM and KG
- 5. Conclusion & Future Work

LLM for KG: KG Completion

Knowledge Prefix Adapter: structure-aware reasoning with structure embedding.



KoPA

LLM for KG: KG Completion

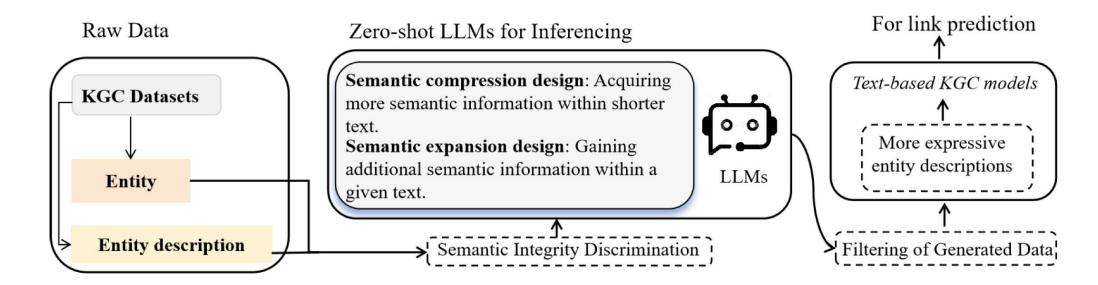
• Experimental results of CAQA dataset.

	Model		UM	1LS			CoD	eX-S		FB15K-237N			
		Acc	P	R	F1	Acc	P	R	F1	Acc	P	R	F1
	TransE [3]	84.49	86.53	81.69	84.04	72.07	71.91	72.42	72.17	69.71	70.80	67.11	68.91
Embadding based	DistMult [38]	86.38	87.06	86.53	86.79	66.79	69.67	59.46	64.16	58.66	58.98	56.84	57.90
Embedding-based	ComplEx [34]	90.77	89.92	91.83	90.87	67.64	67.84	67.06	67.45	65.70	66.46	63.38	64.88
	RotatE [31]	92.05	90.17	94.41	92.23	75.68	75.66	75.71	75.69	68.46	69.24	66.41	67.80
PLM-based	KG-BERT [40]	77.30	70.96	92.43	80.28	77.30	70.96	92.43	80.28	56.02	53.47	97.62	67.84
PLIVI-Dased	PKGC [21]	-	_	-	-	-	_	-	-	<u>79.60</u>	_	-	79.50
	Zero-shot(Alpaca)	52.64	51.55	87.69	64.91	50.62	50.31	99.83	66.91	56.06	53.32	97.37	68.91
	Zero-shot(GPT-3.5)	67.58	88.04	40.71	55.67	54.68	69.13	16.94	27.21	60.15	86.62	24.01	37.59
LLM-based	ICL(1-shot)	50.37	50.25	75.34	60.29	49.86	49.86	50.59	50.17	54.54	53.67	66.35	59.34
Training-free	ICL(2-shot)	53.78	52.47	80.18	63.43	52.95	51.54	98.85	67.75	57.81	56.22	70.56	62.58
	ICL(4-shot)	53.18	52.26	73.22	60.99	51.14	50.58	99.83	67.14	59.29	57.49	71.37	63.68
	ICL(8-shot)	55.52	55.85	52.65	54.21	50.62	50.31	99.83	66.91	59.23	57.23	73.02	64.17
	KG-LLaMA [41]	85.77	87.84	83.05	85.38	79.43	78.67	80.74	79.69	74.81	67.37	96.23	79.25
LLM-based	KG-Alpaca [41]	86.01	94.91	76.10	84.46	80.25	79.38	81.73	80.54	69.91	62.71	98.28	76.56
Fine-tuning	Vanilla IT	86.91	95.18	77.76	85.59	81.18	77.01	88.89	82.52	73.50	65.87	97.53	78.63
	Structure-aware IT	89.93	93.27	86.08	89.54	81.27	77.14	88.40	82.58	76.42	69.56	93.95	<u>79.94</u>
Ko	oPA	92.58	90.85	94.70	92.70	82.74	77.91	91.41	84.11	77.65	70.81	94.09	80.81

LLM for KG: KG Completion

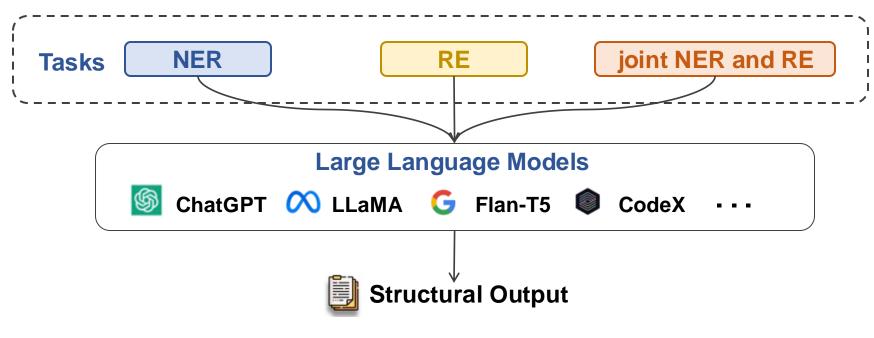
Does the texts optimized by LLMs are more effective for text-based KGC models?

LLMs can add or remove content from entity descriptions.



Constrained Prompts for KGC (CP-KGC)

LLM for KG: Entity and Relation Extraction



Example1

Please list all entity words in the Text ... Option: location, person, organization, ...

NL-LLMs

(Person: Steve, Organization: Apple)

Example2

class Work_for(Relation):

"" Person self.head Work for
Organization self.tail. "

def __init__(self, head: Person = "",
tail: Organization = "",):
self.head = head self.tail = tail

Code-LLMs

RE_result = Work_for(head = Person(name = "Steve"), tail = Organization(name = "Apple"))

LLM for KG: Named Entity Recognition

LLM can perform guidance data augmentation for NER tasks.

Seed Generation Prompt

Given the sentence:

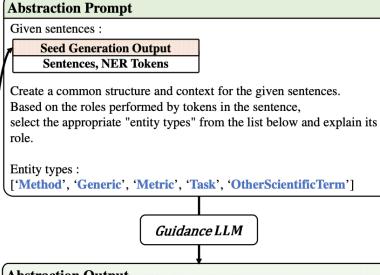
The presence of a moving object and easily estimable **gravity vector**.

Augment the 3 sentences by replacing the entity tokens with new ones of the same types.

Entity tokens : ['gravity vector']
Entity types : ['OtherScientificTerm']

Seed Generation Output

- 1. the presence of a moving object and easily estimable **energy vector**
- 2. the presence of a moving object and easily estimable **force vector**
- 3. the presence of a moving object and easily estimable **magnetic field vector**



Abstraction Output

Context: the presence of a moving object and easily estimable

Structure :spresence> specifies the state of being present, indicating the existence of something. <moving object> describes the type of object present, implying that it is in motion. <easily estimable> indicates that something can be easily calculated or determined.

Entity roles: The entity type < OtherScientificTerm > is used to specify the type of object that is present and in motion, or describe the state of being present.

Guidance Data Augmentation Prompt

Generate 3 unique sentences that include the context content by replacing "entity tokens" with new tokens of the same type.

The generated sentences should be structured in accordance with the "structure" and "entity_roles".

Entity tokens : ['gravity vector']
Entity types : ['OtherScientificTerm']

Abstraction Output
Context, Structure, Entity roles

1

Guidance Data Augmentation Output

1. The existence of an active particle and easily estimable energy vectors.

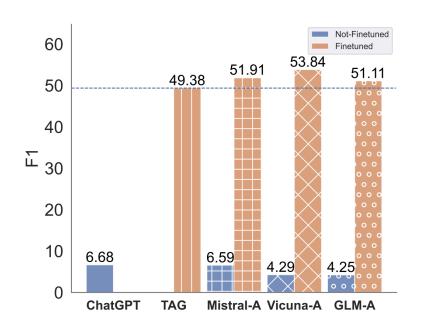
LLM

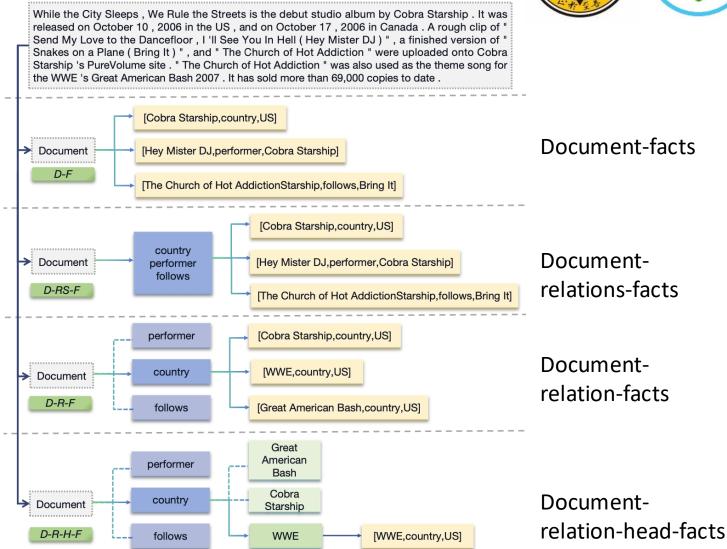
- 2. An **object in motion** and easily estimable **gravity vectors.**
- 3. A moving entity and easily estimable magnetic field vectors.

Guidance LLM Data Augmentation

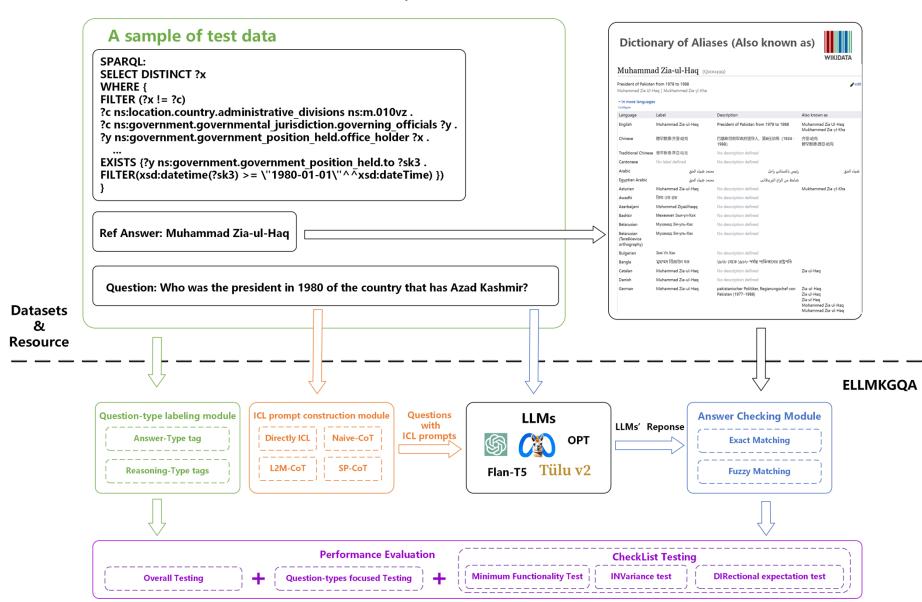
LLM for KG: Relation Extraction

- Exploring LLM on different RE paradigms
- RHF (Relation-Head-Facts).





LLM for KG: KBQA



ELLMKGQA framework:

The Question-type Labeling Module

identifies the answer type of the input question and the reasoning type involved in answering the question (based on the **question text**, **reference answer**, and corresponding **SPARQL query**).

The ICL Prompt Construction Module

converts the input question into various inquiry forms with different contextual learning strategies

The Answer Checking Module

determines whether the LLM's response includes the correct answer to the input question by utilizing a combination of exact matching and fuzzy matching methods (employing an alias dictionary from **Wikidata** in exact matching to reduce false negatives).

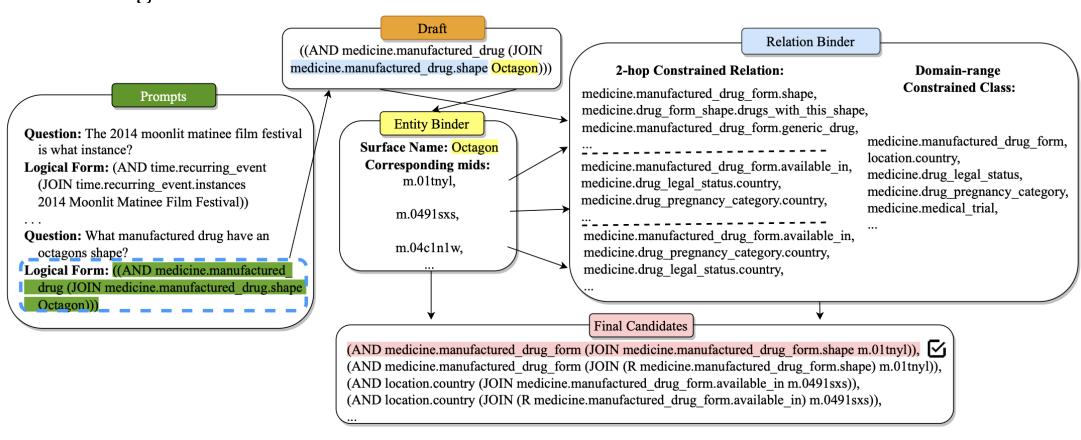
LLM for KG: KBQA

• Experimental results of LLM KBQA

Datasets	KQApro	LC-quad2.0	WQSP	CWQ	GrailQA	GraphQuestions
	Acc	F1	Acc	Acc	Acc	F1
SOTA(supervised)	95.32 ³	83.45 ⁴	82.10 Yu et al. (2022)	72.20 Hu et al. (2022)	76.31	31.8 Gu and Su (2022)
SOTA(unsupervised)	94.20 Nie et al. (2022)	-	62.98 Ye et al. (2022)	=	-	<u> </u>
FLAN-T5-XXL	37.27	30.14	59.87	46.69	29.02	32.27
LLaMA2-7B	49.78	50.85	82.39	63.04	46.74	61.01
LLaMA2-7B-Direct	44.79	44.88	69.16	55.49	38.46	45.92
LLaMA2-7B-Naive	50.59 ↑	44.86	73.36	58.24	40.47	50.98
LLaMA2-7B-L2M	47.59	40.17	64.39	54.27	35.25	43.91
LLaMA2-7B-SP	45.53	41.22	58.18	53.98	33.79	40.70
LLaMA2-13B	48.42	48.92	80.66	59.14	45.22	61.18
LLaMA2-70B	51.82	51.83	85.81	63.85	48.88	63.15
LLaMA3-8B	49.08	51.51	84.29	62.91	45.53	62.42
LLaMA3-8B-Direct	41.82	40.90	76.12	52.79	34.11	49.85
LLaMA3-8B-Naive	50.50 ↑	51.30	69.73	58.12	38.07	53.54
LLaMA3-8B-L2M	18.95	25.58	56.79	43.23	26.07	39.51
LLaMA3-8B-SP	39.68	41.59	67.51	51.04	31.70	44.41
LLaMA3-70B	54.43	60.85	86.32	68.68	51.79	69.25
LLaMA3-70B-Direct	42.36	45.28	76.51	57.83	35.75	49.15
LLaMA3-70B-Naive	57.55 ↑	61.13 ↑	84.72	73.30 ↑	50.94	65.57
LLaMA3-70B-L2M	42.36	45.28	76.51	57.83	35.75	49.15
LLaMA3-70B-SP	44.81	47.74	78.68	56.60	36.13	51.70
GPT-4	50.19	54.53	83.49	65.57	43.96	60.38
GPT-4-Direct	41.60	43.58	77.74	54.06	35.28	48.49
GPT-4-Naive	46.42	49.72	74.15	60.57	37.26	49.53
GPT-4-L2M	50.09	51.32	77.74	64.34	42.92	51.51
GPT-4-SP	50.00	49.91	78.30	62.17	42.08	52.55
GPT-40	56.98	61.51	85.85	74.06	53.96	67.17
GPT-4o-Direct	51.42	55.57	83.96	64.62	41.79	42.92
GPT-4o-Naive	48.49	53.40	79.43	61.79	38.77	49.81
GPT-40-L2M	43.77	47.74	71.32	59.34	31.98	43.49
GPT-4-SP	46.60	49.53	72.26	58.77	36.98	46.51

LLM for KG: KBQA

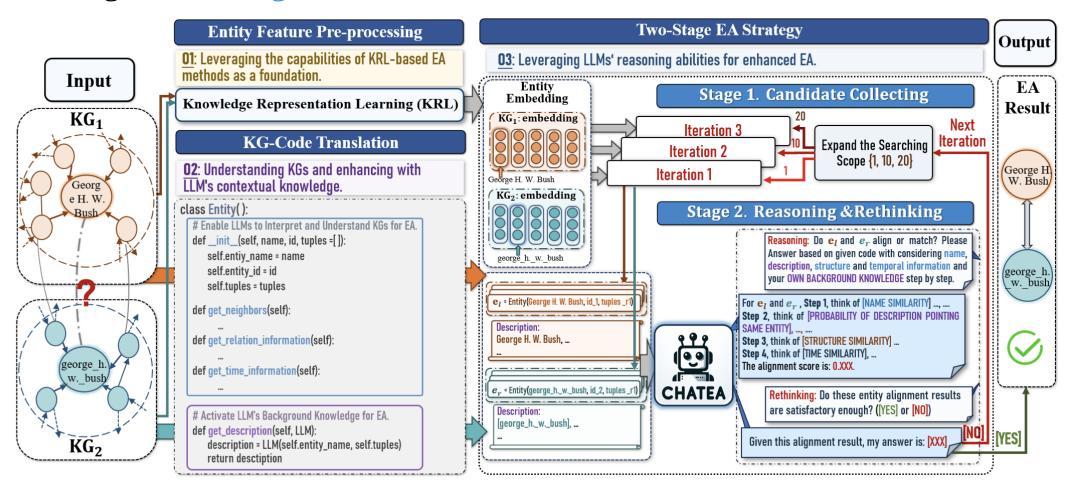
• LLMs help generate logical forms as the draft for a specific question by imitating a few demonstrations.



KB-Binder

LLM for KG: Entity Alignment

Leverage LLM to aligned the entities from two different KGs.



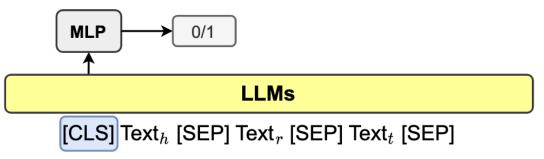
Chat Entity Alignment (ChatEA)

LLM for KG: KG Reasoning

• By leveraging the context encoding capability of LLMs, the representation of the knowledge graph is enhanced using textual information from the knowledge graph.

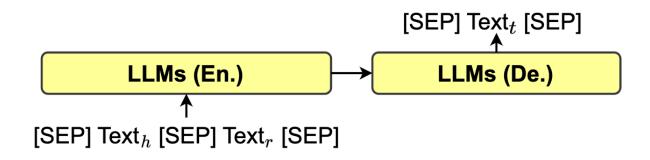
Discriminative Methods:

Encoder-only PLMs (e.g., BERT)



Generative Methods:

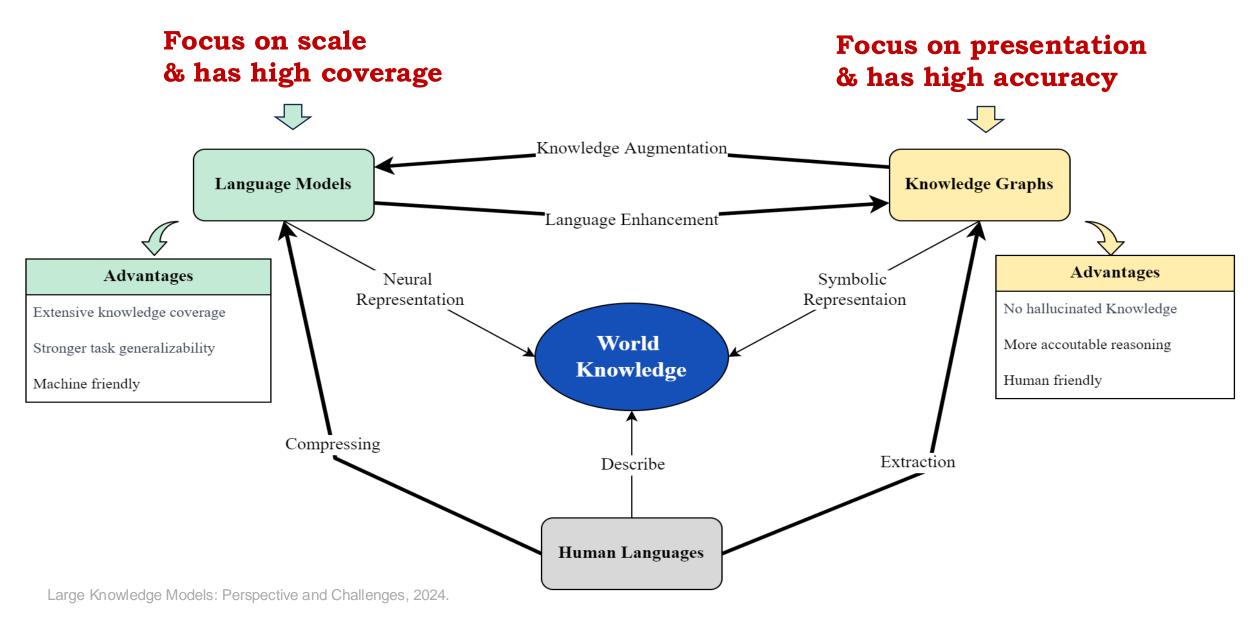
Encoder-decoder or decoder-only PLMs



Contents

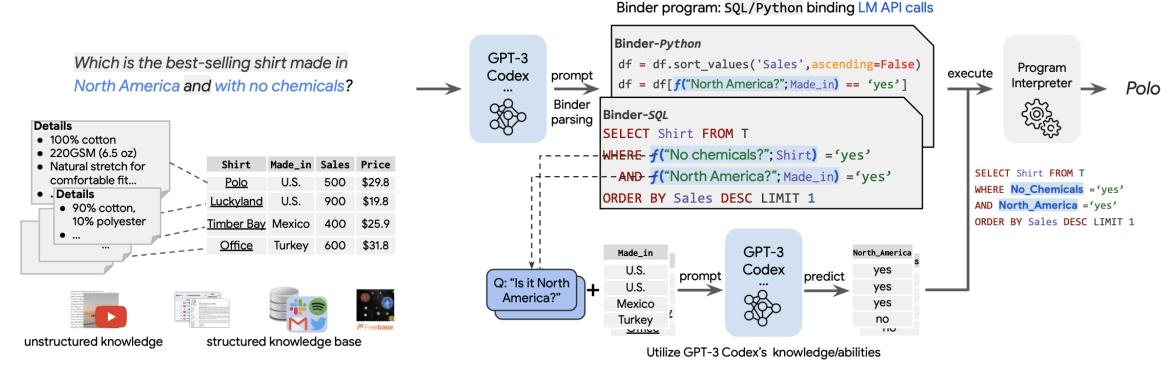
- 1. Introduction of KG & LLM
- 2. KG for LLM
- 3. LLM for KG
- 4. Integration of LLM & KG
- 5. Conclusion & Future Work

How do KG and LLM collaborate?



KG x LLM: Neural-symbolic Framework

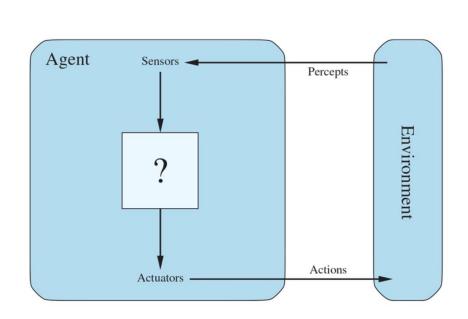
• Binding a unified API of LLM functionalities to a programming language (e.g., SQL, Python, SPARQL ...) to extend its grammar coverage and thus tackle more diverse questions.

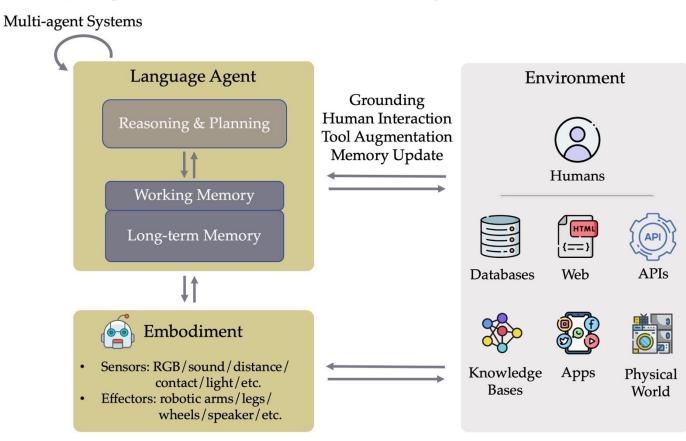


Binder

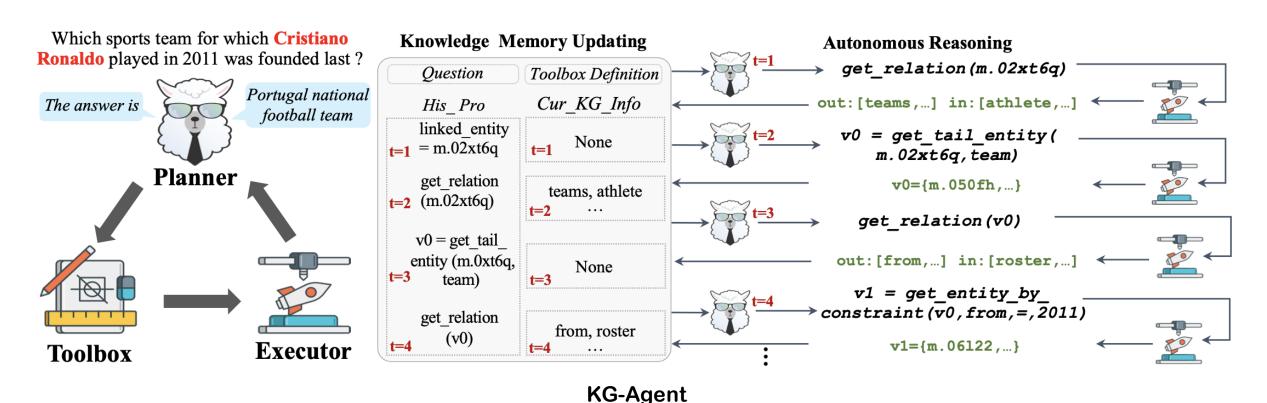
KG x LLM: Language Agent

• Contemporary agents use language for their thought process, which makes it much easier to incorporate heterogeneous external percepts and do multi-step (speculative) planning and reasoning, all in a non-programmed and explicit way.





• Integrating the LLM, multifunctional toolbox, KG-based executor, and knowledge memory, and develop an iteration mechanism that autonomously selects the tool then updates the memory for reasoning over KG



KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Graph. Preprint 2024

KG x LLM: Knowledge Service Platform

Knowledge Service

Search and Recommendation

Dialogue and QA

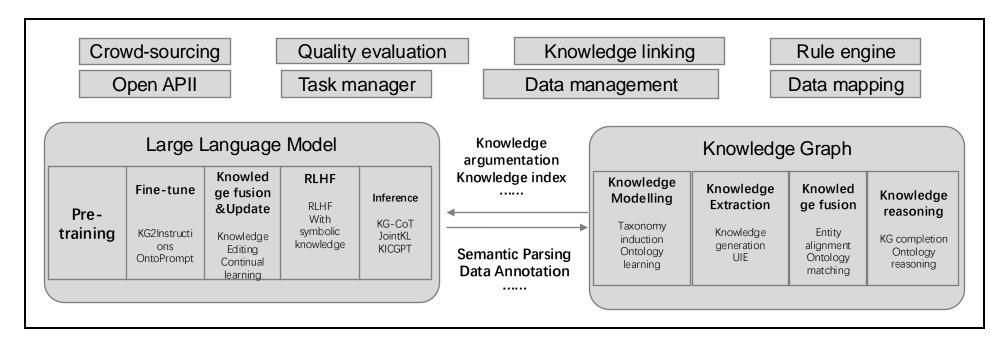
Content Generation Visualization and decision making

Office Copilot

.

Maintenance

KG+LLM



Data

Structured Data

Semistructured Data

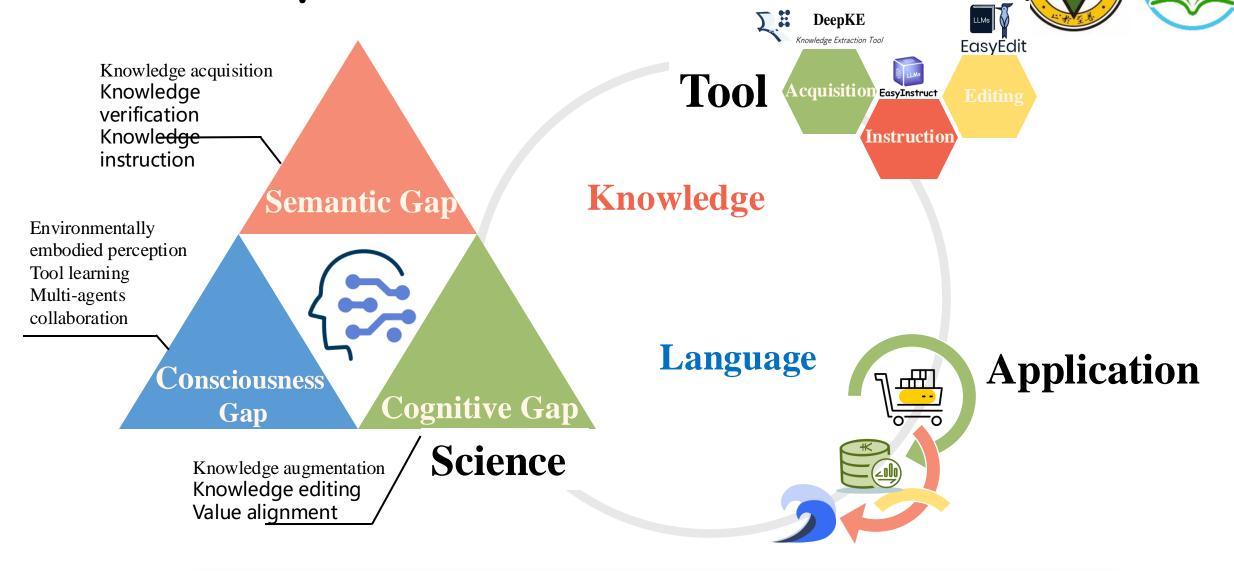
Text

Image

Video

.....

KG x LLM: OpenKG



Language as "form", knowledge as "heart", graph as "skeleton"

Contents

- 1. Introduction of KG & LLM
- 2. KG for LLM
- 3. LLM for KG
- 4. Integration of LLM & KG
- 5. Conclusion & Future Work

Conclusion

- KG for LLM
 - ✓ KG can enhance pre-training, instruction-tuining, RAG, ICL, fusion, update, validation of LLM
- LLM for KG
 - ✓ LLM can knowledge graph completion, extraction, fusion, reasoning and validation of KG
- Integration of LLM and KG
 - ✓ New agents can be designed
 - ✓ OpenKG: Language as "form", knowledge as "heart", graph as "skeleton"

Future Work

- KG for LLM
 - ✓ Effective and efficient learning of symbolic knowledge in KGs
 - ✓ Benchmarks generated by KGs to validate LLMs
 - ✓ Improving (interpretable) reasoning ability of LLM using KGs
- LLM for KG
 - ✓ Automating KG engineering pipeline using agent based LLM
 - ✓ Tool-augmented LLM for symbolic reasoning of KG
 - ✓ Enhancing Knowledge services based on KGs by LLM
- Integration of LLM and KG
 - ✓ Newly designed unified agent
 - ✓ Generalizable, trustable and stable knowledge services
 - ✓ Programmable knowledge engine

Thank you!

Email address: yongruichen@seu.edu.cn